Purification of quartz using an environment-friendly method is important in the contaminants removal. This paper presents advanced method based on calcination pretreatment combined with ultrasound-assisted leaching, for removing iron impurities from industrial quartz. The solvent used is a mixture comprised by diluted hydrochloric acid and oxalic acid. The effects of experimental parameters were investigated and the purification mechanism was discussed using particle size analyzer, scanning electron microscope and polarized light microscope. SiO2 content of concentrate could be increased from 99.6828% to 99.9047%, which achieved 3N level high purity quartz, and Fe2O3 content reduced from 0.0857% to 0.0223%, under the optimal conditions, i.e., calcination temperature of 900 °C, holding time of 2 h, oxalic acid concentration of 10 g/L, hydrochloric acid concentration of 5%, liquid solid ratio of 5, leaching temperature of 60 °C, ultrasound power of 400 W and treatment time of 30 min. Compared to conventional method, the proposed method significantly accelerates the leaching process and increases the iron removal rate. At the same time, the method also can remove gas-liquid inclusions. and Yang Changqiao, Li Suqin, Bai Jiaxing, Han Shuaishuai.
Theory of acoustic waves interaction with material and boundary. Damping velocity, damping, elasticity moduli, frequency spectra, basic characteristics of structure composition of material. Structuroscopy of most common composite iron - graphite (cast iron). Example of structuroscopy of intermetallic compounds. Measurement possibility of rubber composite properties, nanogeopolymers with nanofillers. Trend of further research. and Teorie interakce zvukových vln s materiálem a rozhraním. Rychlost zvuku, útlum, moduly pružnosti, frekvenční spektra jako základní charakteristiky strukturní skladby materiálů. Strukturoskopie nejběžnějšího kompozitu železo - grafit (litiny). Příklad strukturoskopie intermetalických sloučenin. Možnosti měření vlastností kaučukových kompozitů, nanogeopolymerů s nanoplnivy. Směr dalšího výzkumu.
Ultrazvuk, představující akustické kmity prostředí o specifických frekvencích, je jedním z mnoha fyzikálních činitelů, které se mohou uplatnit při interakcích s biologickými objekty. Posouzení účinků ultrazvukového pole na biologické systémy je možné hodnotit dle různých klasifikačních kritérií, např. dle povahy interakčního procesu, dle interagujících biologických struktur či výsledného "produktu". Při snaze o vytvoření univerzálního modelu interakce ultrazvuku a biologických struktur hraje velkou roli variabilita biologického materiálu a jeho různorodá odezva na aplikované ultrazvukové pole, což situaci velmi ztěžuje. Přesto nese ultrazvukové pole potenciál vysoké využitelnosti v oblasti medicíny a přírodních věd., Ultrasound, representing the acoustic vibrations of medium with specific frequencies is one of many physical factors that can interact with biological objects. Assessment of the effects of ultrasonic field on biological systems can be evaluated according to different classification criteria, such as the nature of the interaction process, by the character of interacting biological structures or by the final process "product". In an effort to create a universal model of interaction of ultrasound and biological structures the variability of biological materials and its changeable response to the applied ultrasonic field plays an important role, which makes this process very difficult. Yet, after all, ultrasonic field has a high application potential in the field of medicine and science., Vladan Bernard, Vojtěch Mornstein, Jiřína Škorpíková, Naděžda Vaškovicová., and Obsahuje bibliografii
A comparison of the effects of ultrasound produced by low- and high-frequency ultrasonic apparatuses upon biological systems is one of the basic problems when studying ultrasound cavitation effects. One possibility for how to compare these effects is the indirect method which uses well-known physical quantities characterizing the interaction of ionizing radiation with matter and which also converts these quantities to one common physical quantity. The comparison was performed with two methods applied to the chemical dosimetry of ionizing radiation. The first method employed a twocomponent dosimeter which is composed of 50 % chloroform and 50 % re-distilled water (i.e. Taplin dosimeter). The other method used a modified iodide dosimeter prepared from a 0.5 M potassium iodide solution. After irradiation or ultrasound exposure, measurable chemical changes occurred in both dosimeters. The longer the exposure, the greater the chemical changes. These effects are described by the relationship of these changes versus the exposure times in both dosimeters. The UZD 21 ultrasonic disintegrator (with a frequency of 20 kHz, 50 % power output) was used as a lowfrequency ultrasound source, and the BTL-07 therapeutic instrument (with a frequency of 1 MHz and intensity of 2 W/cm2) was used as a high-frequency cavitation ultrasound source. For comparison, a 60Co gamma source was applied (60Co, gamma energies of 1.17 and 1.33 MeV, activity of 14 PBq). Results of this study have demonstrated that the sonochemical products are generated during exposure in the exposed samples of both dosimeters for all apparatuses used. The amount of these products depends linearly upon the exposure time. The resulting cavitation effects were recalculated to a gray-equivalent dose (the proposed unit is cavitation gray [cavitGy]) based on the sonochemical effects compared to the effects of ionizing radiation from the 60Co source., B. Kratochvíl, V. Mornstein., and Obsahuje bibliografii