The flow of a mixture of liquid and solid particles at medium and high volume fraction through an expansion in a rectangular duct is considered. In order to improve the modelling of the phenomenon with respect to a previous investigation (Messa and Malavasi, 2013), use is made of a two-fluid model specifically derived for dense flows that we developed and implemented in the PHOENICS code via user-defined subroutines. Due to the lack of experimental data, the two-fluid model was validated in the horizontal pipe case, reporting good agreement with measurements from different authors for fully-suspended flows. A 3D system is simulated in order to account for the effect of side walls. A wider range of the parameters characterizing the mixture (particle size, particle density, and delivered solid volume fraction) is considered. A parametric analysis is performed to investigate the role played by the key physical mechanisms on the development of the two-phase flow for different compositions of the mixture. The main focuses are the distribution of the particles in the system and the pressure recovery.
The flow of a solid-water mixture through an upward-facing step in a channel is numerically investigated. The effect of expansion ratio, mean solids volume fraction and particle diameter on the velocity field, pressure distribution and solid volume fraction field is studied. Expansion ratios of 0.50 and 0.67, particle diameter of 125 µm and 440 µm and mean solid volume fraction between 0.05 and 0.20 are considered. Particle density is 2465 kg m-3 . An Eulerian twofluid model is used to simulate the flow. Due to the lack of experimental data, the model was validated by comparison to other numerical investigations and to experimental data about the horizontal pipe case. Afterwards, it is studied the effect of the above mentioned parameters upon the degree of coupling between the phases and the extension of the disturbance region in the pressure and solid volume fraction fields downstream the step. Parameters of engineering interest, such as the reattachment length and the pressure recovery downstream the enlargement, are investigated.