Rock landforms in the Sokolský hřbet (ridge) and the adjacent Žulovská pahorkatina (hilly land) have been analysed through detailed field mapping at a scale of 1:10,000; subsequently the spatial distribution of these features was analysed using a DEM within a GIS framework. Particular attention was focused upon the shape of the rock landforms, their arrangement, the aspect of their walls, and their topographic position within the two adjacent geomorphological units. Rock landforms in the Sokolský hřbet include frost-riven cliffs, isolated residual rockforms, and blockfields in metamorphic rocks. In contrast, rock landforms in the Žulovská pahorkatina include rock steps and numerous tors exposed from the basal weathering surface. The Sokolský hřbet has been interpreted as a neotectonically uplifted mountainous region; the rock landforms described here are thought to have formed under periglacial conditions during cold periods in the Pleistocene, whilst the extensive granitoid block accumulations developed on marginal fault scarps are thought to result from the exposure of intensively disintegrated rocks due to uplift. Žulovská pahorkatina has been interpreted as a remodelled stripped etch surface, which has been twice glaciated during the Middle Pleistocene. The rock landforms in both units appear to be structurally and lithologically controlled; moreover, various shapes of granite rock landforms are controlled by various types of jointing and parting. The clear differences recognised in both the rock landforms and overall morphology reflects the considerable disparity associated with relief development between two adjacent morphostructural units; such variability provides evidence for a long polygenetic history within the entire study area., Petra Štěpančíková and Matt Rowberry., and Obsahuje bibliografii