General weather conditions may have a strong influence on the individual elements of the hydrological cycle, an important part of which is rainfall interception. The influence of general weather conditions on this process was analysed, evaluating separately the influence of various variables on throughfall, stemflow, and rainfall interception for a wet (2014), a dry (2015), and an average (2016) year. The analysed data were measured for the case of birch and pine trees at a study site in the city of Ljubljana, Slovenia. The relationship between the components of rainfall partitioning and the influential variables for the selected years was estimated using two statistical models, namely boosted regression trees and random forest. The results of both implemented models complemented each other well, as both indicated the rainfall amount and the number of raindrops as the most influential variables. During the wet year 2014 rainfall duration seems to play an important role, correlating with the previously observed influence of the variables during the wetter leafless period. Similarly, during the dry year 2015, rainfall intensity had a significant influence on rainfall partitioning by the birch tree, again corresponding to the influences observed during the drier leafed period.
The aim of this study was to assess the impact of different vegetation on the distribution of rainfall (due to throughfall and stemflow), water regime, and Al and SO4 2- leaching from forest soils. The water flow and Al and SO4 2- transport were modeled using HYDRUS-1D. The study was performed at two elevation transects on the Paličník and Smědava Mountain in Jizera mountains. Podzols and Cambisols were prevailing soil units in this area. It was shown that the effect of the precipitation redistribution on water regime was considerable in the beech forest, while it was almost negligible in the spruce forest. Redistribution of precipitation under trees caused runoff (in one case), increased water discharge through the soil profile bottom, reduction of water storage in the soil, and thus reduction of root water uptake. Simulated Al leaching from the soil profile was determined mainly by the initial Al content in the soil profile bottom. Leaching of SO4 2- was mainly determined by its initial content in the soil and to a lesser extent by redistributed precipitation and SO4 2- deposition.
Mixed evergreen-deciduous broadleaved forest is the transitional type of evergreen broadleaved forest and deciduous broadleaved forest, and plays a unique eco-hydrologic role in terrestrial ecosystem. We investigated the spatiotemporal patterns of throughfall volume of the forest type in Shennongjia, central China. The results indicated that throughfall represented 84.8% of gross rainfall in the forest. The mean CV (coefficient of variation) of throughfall was 27.27%. Inter-event variability in stand-scale throughfall generation can be substantially altered due to changes in rainfall characteristics, throughfall CV decreased with increasing rainfall amount and intensity, and reached a quasi-constant level when rainfall amount reached 25 mm or rainfall intensity reached 2 mm h–1. During the leafed period, the spatial pattern of throughfall was highly temporal stable, which may result in spatial heterogeneity of soil moisture.