Dipeptidyl peptidase-IV (DPP-IV, CD26) is a serine protease almost ubiquitously expressed on cell surface and present in body fluids. DPP-IV has been suggested to proteolytically modify a number of biologically active peptides including substance P (SP) and the chemokine stro mal cell derived factor-1α (SDF-1α, CXCL12). SP and SDF-1α have been implicated in the regulation of multiple biological processes and also induce responses that may be relevant for glioma progression. Both SP and SDF-1α are signaling through cell surface receptors and use intracellular calcium as a second messenger. The effect of DPP-IV on intracellular calcium mobilization mediated by SP and SDF- α was monitored in suspension of wild type U373 and DPP-IV transfected U373DPPIV glioma cells using indicator FURA-2. Nanomolar concentrations of SP triggered a transient dose dependent increase in intracellular calcium rendering the cells refractory to repeated stimulation, while SDF-1α had no measurable effect. SP signaling in DPP-IV overexpressing U373DPPIV cells was not substantially different from that in wild type cells. However, preincubation of SP with the DPP-IV overexpressing cells lead to the loss of its signaling potential, which could be prevented with DPP-IV inhibitors. Taken together, DPP-IV may proteolytically inactivate local mediators involved in gliomagenesis., P. Bušek, J, Stremeňová, E. Křepela, A. Šedo., and Obsahuje bibliografii a bibliografické odkazy
We used a model of tibial lengthening in rabbits to study the postoperative pain pattern during limb-lengthening and morphological changes in the dorsal root ganglia (DRG), including alteration of substance P (SP) expression. Four groups of animals (naïve; OG: osteotomized only group; SDG/FDG: slow/fast distraction groups, with 1 mm/3 mm lengthening a day, respectively) were used. Signs of increasing postoperative pain were detected until the 10th postoperative day in OG/SDG/FDG, then they decreased in OG but remained higher in SDG/FDG until the distraction finished, suggesting that the pain response is based mainly on surgical trauma until the 10th day, while the lengthening extended its duration and increased its intensity. The only morphological change observed in the DRGs was the presence of large vacuoles in some large neurons of OG/SDG/FDG. Cell size analysis of the S1 DRGs showed no cell loss in any of the three groups; a significant increase in the number of SP-positive large DRG cells in the OG; and a significant decrease in the number of SP-immunoreactive small DRG neurons in the SDG/FDG. Faster and larger distraction resulted in more severe signs of pain sensation, and further reduced the number of SP-positive small cells, compared to slow distraction., K. Pap, Á. Berta, G. Szöke, M. Dunay, T. Németh, K. Hornok, L. Marosföi, M. Réthelyi, M. Kozsurek, Z. Puskár., and Obsahuje bibliografii
The role of afferent sensory neurones in gastric mucosal protection is discussed. The principal effects of substance P and capsaicin on gastric motility and mucosal blood flow are taken in correlation with gastric mucosal injury. It seems likely that the protective effect of sensory neuropeptides is dependent on gastric mucosal blood flow and is mediated through the nitric oxide-generating system and partly the prostaglandins. The interaction between these two systems and the primordial effect of one of them on gastric mucosal blood flow and mucosal integrity after neuropeptide release is still not clear.