Fifty-day-old fry of tilapia hybrids (Oreochromis aureus x niloticus) were placed in aquaria containing sediment with oocysts of Eimeria (sensu lato) vanasi Landsberg et Paperna. In the first 29 h after exposure sporulated oocysts in the stomach and free sporozoites in the gut could be found in examined fish. By 7 to 56 h after exposure, sporozoites, with their characteristic crystalloid body, were detected in intraepithélial lymphocyte-like and other leucocyte-like cells, but never in the epithelial cells. Infected cells were confined to the epithelial layer and did not enter the lamina propria. Within this time, some of the sporo-zoitcs divided by endodyogeny, once or twice in succession, to form daughter sporozoites. The parent’s sporozoite crystalline body was divided between the offspring of the primary and secondary divisions.
In the present study, we have investigated the role of antimalarial drug halofantrine (HF) in inducing the sterile protection against challenges with sporozoites of the live infectious Plasmodium yoelii (Killick-Kendrick, 1967) in Swiss mice malaria model. We observed that during the first to third sequential sporozoite inoculation cycles, blood-stage patency remains the same in the control and chemoprophylaxis under HF drug cover (CPS-HF) groups. However, a delayed blood-stage infection was observed during the fourth and fifth sporozoite challenges and complete sterile protection was produced following the sixth sporozoite challenge in CPS-HF mice. We also noticed a steady decline in liver stage parasite load after 3th to 6th sporozoite challenge cycle in CPS-HF mice. CPS-HF immunisation results in a significant up-regulation of pro-inflammatory cytokines (IFN-γ, TNF-α, IL-12 and iNOS) and down-regulation of anti-inflammatory cytokines (IL-10 and TGF-β) mRNA expression in hepatic mononuclear cells (HMNC) and spleen cells in the immunised CPS-HF mice (after 6th sporozoite challenge) compared to control. Overall, our study suggests that the repetitive sporozoite inoculation under HF drug treatment develops a strong immune response that confers protection against subsequent challenges with sporozoites of P. yoelii.
A new haemogregarine species Hepatozoon affluomaloti sp. n. is described from erythrocytes in the peripheral blood of crag lizards Pseudocordylus melanotus (Smith) and Pseudocordylus subviridis (Smith) (Sauria: Cordylidae) from mountainous regions in the Eastern Free State, South Africa. This species can be distinguished from all other congeners based on its large size, staining properties and life cycle development in its vector, Culex (Afroculex) lineata (Theobald) (Diptera: Culicidae). Mature gamonts stain mostly uniformly pinkish-purple with Giemsa, sometimes containing darker azurophilic granules anterior and posterior to the nucleus. The reflexed posterior extremity of the gamont stage sometimes stains slightly deeper purple and the nucleus is dense and placed in the posterior third of the parasite body. Merogonic stages of this haemogregarine occur in the liver tissues of P. melanotus with dizoic meronts. Macromeronts contains 2-7 macromerozoites and micromeronts contains 9-24 micromerozoites. Sporogonic developmental stages found in the proposed final host and vector, C. lineata, include large oocysts, measuring 54 × 48 µm on average. Sporulating oocysts with 8 nuclei are present in mosquitoes 6-7 days post-feeding on infected lizards. Sporocysts with mature sporozoites measure 31.0 × 21.8 µm on average and each contains 2-8 large sporozoites. It is suggested that transmission of infective sporozoites is achieved through predation of lizards on mosquitoes., Johann Van As, Angela J. Davies, Nico J. Smit., and Obsahuje bibliografii