In this paper, we give a new approach to the study of Weyl-type theorems. Precisely, we introduce the concepts of spectral valued and spectral partitioning functions. Using two natural order relations on the set of spectral valued functions, we reduce the question of relationship between Weyl-type theorems to the study of the set difference between the parts of the spectrum that are involved. This study solves completely the question of relationship between two spectral valued functions, comparable for one or the other order relation. Then several known results about Weyl-type theorems become corollaries of the results obtained.
Our purpose is to present a number of new facts about the structure of semipositive matrices, involving patterns, spectra and Jordon form, sums and products, and matrix equivalence, etc. Techniques used to obtain the results may be of independent interest. Examples include: any matrix with at least two columns is a sum, and any matrix with at least two rows, a product, of semipositive matrices. Any spectrum of a real matrix with at least 2 elements is the spectrum of a square semipositive matrix, and any real matrix, except for a negative scalar matrix, is similar to a semipositive matrix. M-matrices are generalized to the non-square case and sign patterns that require semipositivity are characterized., Jonathan Dorsey, Tom Gannon, Charles R. Johnson, Morrison Turnansky., and Obsahuje seznam literatury
We study conditions of discreteness of spectrum of the functional-differential operator Lu = −u ′′ + p(x)u(x) + ∫ ∞ −∞ (u(x) − u(s)) dsr(x, s) on (−∞,∞). In the absence of the integral term this operator is a one-dimensional Schrödinger operator. In this paper we consider a symmetric operator with real spectrum. Conditions of discreteness are obtained in terms of the first eigenvalue of a truncated operator. We also obtain one simple condition for discreteness of spectrum.
Let $B(X)$ be the algebra of all bounded linear operators in a complex Banach space $X$. We consider operators $T_1,T_2\in B(X)$ satisfying the relation $\sigma _{T_1}(x) = \sigma _{T_2}(x)$ for any vector $x\in X$, where $\sigma _T(x)$ denotes the local spectrum of $T\in B(X)$ at the point $x\in X$. We say then that $T_1$ and $T_2$ have the same local spectra. We prove that then, under some conditions, $T_1 - T_2$ is a quasinilpotent operator, that is $\Vert (T_1 - T_2)^n\Vert ^{1/n} \rightarrow 0$ as $n \rightarrow \infty $. Without these conditions, we describe the operators with the same local spectra only in some particular cases.
Ordered prime spectra of Boolean products of bounded DRl-monoids are described by means of their decompositions to the prime spectra of the components.
We investigate the traceless component of the conformal curvature tensor defined by (2.1) in Kähler manifolds of dimension $\ge 4$, and show that the traceless component is invariant under concircular change. In particular, we determine Kähler manifolds with vanishing traceless component and improve some theorems (for example, [4, pp. 313–317]) concerning the conformal curvature tensor and the spectrum of the Laplacian acting on $p$ $(0\le p\le 2)$-forms on the manifold by using the traceless component.
First, some classic properties of a weighted Frobenius-Perron operator P u ϕ on L 1 (Σ) as a predual of weighted Koopman operator W = uUϕ on L∞(Σ) will be investigated using the language of the conditional expectation operator. Also, we determine the spectrum of P u ϕ under certain conditions