A combined study of morphology, stem anatomy and DNA sequencing data (nuclear ribosomal ITS region and rpl32-trnL and rps12-rpl20 intergenic spacers of chloroplast DNA) was used to identify a putative Potamogeton hybrid from a river in NE Poland. Based on the morphological and anatomical characters the plants were tentatively identified as P. ×subobtusus Hagstr., a hybrid between P. alpinus Balb. and P. nodosus Poir. This identification was independently confirmed by the presence in hybrid individuals of an additive ITS sequence pattern from these two parental species. In all plants peaks corresponding to nucleotide states of both parents were clearly distinguishable, however the variants from P. nodosus dominated over those from P. alpinus. P. nodosus was also identified as the maternal parent of the hybrid based on cpDNA data and dominated the expression of morphological features in hybrid individuals. A detailed morphological description of P. × subobtusus and the typification of the name are provided. As P. nodosus rarely hybridizes with other species, existence of other hybrids, as well as possible difficulties in recognizing these taxa are also discussed.
The intestinal protozoan parasite Giardia duodenalis (Lambl, 1859) Kofoid & Christiansen, 1915 [syn. Giardia intestinalis and Giardia lamblia] has emerged as a widespread enteric pathogen in humans and domestic animals. In recent years, G. duodenalis has been found in cattle worldwide and longitudinal studies have reported cumulative prevalence of 100% in some herds. In the present study, we determined the prevalence and genetic characterisation of G. duodenalis in 200 dairy cattle from 10 dairy farms in São Paulo state, Brazil. All faecal specimens were screened for the presence of G. duodenalis using microscopy examination, enzyme immunoassay (EIA) and polymerase chain reaction (PCR). DNA was extracted from faecal samples and G. duodenalis were identified by amplification of the small subunit ribosomal (SSU-rDNA) and glutamate dehydrogenase (GDH) genes followed by restriction fragment length polymorphism (RFLP) or sequencing analysis. Giardia was identified in eight farm locations (80% prevalence). Overall, 15/200 (7.5%) animals were positive for infection, only one of which was a cow. Giardia duodenalis genotype E was present in 14 of the animals tested. Zoonotic genotype AI was present in one positive sample. Genotype E and genotype A represented 93% and 7% of G. duodenalis infections, respectively. This study demonstrates that G. duodenalis infection was prevalent in dairy calves in São Paulo state and that the non-zoonotic genotype E predominates in cattle in this region. Nevertheless, calves naturally infected in Brazil can shed Giardia cysts that can potentially infect humans, and thus, they may represent a public health risk.
The K13 propeller domain mutation and pfmdr1 amplification have been proposed as useful molecular markers for detection and monitoring of artemisinin resistant Plasmodium falciparum Welch, 1897. Genomic DNA isolates of P. falciparum was extracted from 235 dried blood spot or whole blood samples collected from patients with uncomplicated falciparum malaria residing in areas along the Thai-Myanmar border during 2006-2010. Nested polymerase chain reaction (PCR) and sequencing were performed to detect mutations in K13 propeller domain of P. falciparum at codon 427-709. Pfmdr1 gene copy number was determined by SYBR Green I real-time PCR. High prevalence of pfmdr1 multiple copies was observed (42.5% of isolates). The presence of K13 mutations was low (40/235, 17.2%). Seventeen mutations had previously been reported and six mutations were newly detected. The C580Y was found in two isolates (0.9%). The F446I, N458Y and P574L mutations were commonly detected. Seven isolates had both K13 mutation and pfmdr1 multiple copies. It needs to be confirmed whether parasites harbouring both K13 mutation and pfmdr1 multiple copies and/or the observed new mutations of K13 propeller domain are associated with clinical artemisinin resistance., Papichaya Phompradit, Wanna Chaijaroenkul, Phunuch Muhamad, Kesara Na-Bangchang., and Obsahuje bibliografii
The recognition of hybrids of linear-leaved taxa of Potamogeton (sect. Graminifolii;) based on morphology is difficult and often debatable. As a consequence, currently only a few hybrid taxa are considered valid and many linear-leaved hybrids described in the past are not now recognized. On the other hand, the use of molecular tools has recently allowed more efficient tests of the origin of morphological forms and the tracking of hybridization events in Potamogeton systematics. In this paper, Potamogeton ×maëmetsiae Zalewska-Gałosz et M. Ronikier nothosp. nov. (Potamogetonaceae), a hybrid between two linear-leaved species, P. friesii and P. rutilus, is described and illustrated. Hybrid plants were collected from two Central-European populations growing in Lake Skaidrys (Lithuania) and Soitsjärv (Estonia). The hybrid origin of the new entity was identified based on a morphological survey and independently confirmed using nuclear (ITS, 5S-NTS) and chloroplast (rpl32-trnL intergenic spacer) DNA sequence data and AFLP analysis of genetic structure. Differences between P. ×maëmetsiae and similar taxa are outlined and other relevant details of the new hybrid discussed.
Endometrial carcinoma (ECa) is one of the most common neoplasia of the female genital tract. The phosphatase and tensin (PTEN) homolog is the most frequently mutated tumor suppressor gene in endometrial carcinoma. PTEN encodes a phosphatase, a key regulatory enzyme involved in a signal transduction pathway that regulates cell growth, migration and apoptosis. The study evaluates an association between the morphological appearance of endometrial hyperplasia and ECa, and the presence of PTEN variations, PTEN protein level and intracellular localization. A total of 67 archived formalin-fixed and paraffin-embedded human biopsy tissue specimens with normal proliferative and secretory endometrium, endometrial hyperplasia without atypia and endometrial atypical hyperplasia, endometrioid the grade G1 and G3 and serous subtype of ECa were evaluated by sequencing for the presence of mutations in coding regions of PTEN gene of endometrial epithelial cells. The PTEN gene expression and intercellular localization of PTEN protein were evaluated immunohistochemically by immunoreactive score (IRS). PTEN mutation spectrum in endometrial carcinoma was identified for Slovak population. Twenty-eight non-silent mutations were identified in PTEN, twelve of them being novel, not annotated in Catalogue of Somatic Mutations in Cancer. Higher frequency of PTEN mutations was observed in serous carcinoma compared to global average. No correlation was observed between samples IRS, PTEN cellular localization and identified mutations. PTEN sequencing can be beneficial for patients considering prognosis of disease and sensitivity to treatment.
Brachiola algerae (Vavra et Undeen, 1970), a parasite of Anopheles mosquitoes, has also been isolated from a human cornea, a cutaneous nodule and deep muscle tissue. All three human isolates of B. algerae are morphologically, serologically, and genetically similar to the mosquito-derived isolates including the original isolate of Vavra and Undeen. All of these isolates grew well in mammalian cell cultures at 37°C and produced spores. Transmission electron microscopy revealed that all developmental stages including meronts, sporoblasts and spores were diplokaryotic and developed in direct contact with the host cell cytoplasm, a feature characteristic of the genus Brachiola. Spores of all isolates reacted well, in the immunofluorescence assay, with the rabbit anti-B. algerae serum. In the immunoblot assay, although the overall banding patterns of the human and mosquito isolates were similar, minor differences could be discerned. Sequencing of the PCR products of the amplified SSU rRNA gene revealed the existence of two distinct genotypes; the original mosquito (Undeen) isolate belonged to genotype 1 and the isolate from cornea and that from the deep muscle biopsy to genotype 2, whereas the isolates from a mosquito and one of the other two human isolates (one from skin abscess) had both genotypes, 1 and 2. It is known that spores of mosquito-derived B. algerae can not only proliferate in mammalian cell cultures at 37°C but also can infect mice when injected into footpads or deposited on the corneal surface. These observations indicate that the spores have potential to be a risk factor for humans, especially those with immunodeficiency.
Psocids of the genus Liposcelis (Psocoptera: Liposcelididae) are stored product pests that are difficult to identify morphologically. A molecular method based on Restriction Fragment Length Polymorphism (RFLP) of the PCR-amplified 16S rDNA gene was developed for the rapid discrimination of four common species (L. bostrychophila, L. entomophila, L. decolor, and L. paeta). Different developmental stages and populations (P.R. China and Czech Republic) were tested. One DNA fragment of about 500 bp in length was amplified from genomic DNA and the fragment was then digested using the restriction endonuclease DraI. Identification of the relevant banding pattern allowed all the developmental stages and both sexes to be discriminated in the species tested. The banding patterns of L. entomophila from all populations were identical, while the relevant restriction digests and sequence analysis confirmed that the Chinese and Czech populations of L. bostrychophila, L. decolor, and L. paeta differed. In conclusion, PCR-RFLP with one pair of primers (16Sar and 16Sbr) and one restrictive endonuclease, DraI, proved a reliable method for rapidly discriminating the Liposcelis species tested.