Brachiola algerae (Vavra et Undeen, 1970), a parasite of Anopheles mosquitoes, has also been isolated from a human cornea, a cutaneous nodule and deep muscle tissue. All three human isolates of B. algerae are morphologically, serologically, and genetically similar to the mosquito-derived isolates including the original isolate of Vavra and Undeen. All of these isolates grew well in mammalian cell cultures at 37°C and produced spores. Transmission electron microscopy revealed that all developmental stages including meronts, sporoblasts and spores were diplokaryotic and developed in direct contact with the host cell cytoplasm, a feature characteristic of the genus Brachiola. Spores of all isolates reacted well, in the immunofluorescence assay, with the rabbit anti-B. algerae serum. In the immunoblot assay, although the overall banding patterns of the human and mosquito isolates were similar, minor differences could be discerned. Sequencing of the PCR products of the amplified SSU rRNA gene revealed the existence of two distinct genotypes; the original mosquito (Undeen) isolate belonged to genotype 1 and the isolate from cornea and that from the deep muscle biopsy to genotype 2, whereas the isolates from a mosquito and one of the other two human isolates (one from skin abscess) had both genotypes, 1 and 2. It is known that spores of mosquito-derived B. algerae can not only proliferate in mammalian cell cultures at 37°C but also can infect mice when injected into footpads or deposited on the corneal surface. These observations indicate that the spores have potential to be a risk factor for humans, especially those with immunodeficiency.
The morphology and proliferation of vascular smooth muscle cells (VSMC) were studied in cultures prepared from the aorta of newborn male and female Wistar rats. The doubling times (DT) of the male-derived population were 16.4 ±0.7 h and 30.0 ±2.2 h in the exponential and post-exponential growth phases, respectively. In the female donor cells, the corresponding DT values were significantly longer, i.e. 21.9 ± 1.8 h and 38.0 ±2.2 h. In addition, the period of growth was shorter in the female-derived cultures. The percentage of 3H-thymidine labelled cells in male cultures was 61.0±3.1, 92.8± 1.9 and 98.7±0.6 % at 2, 27 and 52 h, respectively. In the female-derived populations, only 24.6 ±4.4, 66.1 ±3.8 and 82.8 ±2.0 % of cells were labelled at the corresponding incubation intervals. As a consequence, the final population density in male cultures was 5.6 times higher. In addition, the male-derived VSMC were mainly spindle-shaped and bulgy in appearance while those from female donors were flat and polygonal which means that the cells were adhering to the growth support to a different extent. The study revealed early determination and long-term persistence of lower adhesiveness as well as higher growth potential of male VSMC, i.e. properties which may be of importance for explaining the higher incidence of vascular wall disorders in males.
Brachiola algerae (Vavra et Undeen, 1970) Lowman, Takvorian et Cali, 2000, originally isolated from a mosquito, has been maintained in rabbit kidney cells at 29°C in our laboratory. This culture system has made it possible to study detailed aspects of its development, including spore activation, polar tube extrusion, and the transfer of the infective sporoplasm. Employing techniques to ultrastructurally process and observe parasite activity in situ without disturbance of the cultures has provided details of the early developmental activities of B. algerae during timed intervals ranging from 5 min to 48 h. Activated and non-activated spores could be differentiated by morphological changes including the position and arrangement of the polar filament and its internal structure. The majority of spores extruded polar tubes and associated sporoplasms within 5 min post inoculation (p.i.). The multilayered interlaced network (MIN) was present in extracellular sporoplasms and appeared morphologically similar to those observed in germination buffer. Sporoplasms, observed inside host cells were ovoid, contained diplokaryotic nuclei, vesicles reminiscent of the MIN remnants, and their plasmalemma was already electron-dense with the "blister-like" structures, typical of B. algerae. By 15 min p.i., the first indication of parasite cell commitment to division was the presence of chromatin condensation within the diplokaryotic nuclei, cytoplasmic vesicular remnants of the MIN were still present in some parasites, and early signs of appendage formation were present. At 30 min p.i., cell division was observed, appendages became more apparent, and some MIN remnants were still present. By two hours p.i., the appendages became more elaborate and branching, and often connected parasite cells to each other. In addition to multiplication of the organisms, changes in parasite morphology from small oval cells to larger elongated "more typical" parasite cells were observed from 5 h through 36 h p.i. Multiplication of proliferative organisms continued and sporogony was well underway by 48 h p.i., producing sporonts and sporoblasts, but not spores. The observation of early or new infections in cell cultures 12-48 h p.i., suggests that there may also exist a population of spores that do not immediately discharge, but remain viable for some period of time. In addition, phagocytized spores were observed with extruded polar tubes in both the host cytoplasm and the extracellular space, suggesting another means of sporoplasm survival. and Finally, extracellular discharged sporoplasms tightly abutted to the host plasmalemma, appeared to be in the process of being incorporated into the host cytoplasm by phagocytosis and/or endocytosis. These observations support the possibility of additional methods of microsporidian entry into host cells and will be discussed.