Heracleum mantegazzianum is one of the most invasive species in the Czech flora. The present study describes its flowering phenology and assess the effectiveness of protandry in preventing selfing in this self-compatible species, describes the timing of flowering in a heavily invaded area of Slavkovský les (Czech Republic) and estimates fruit set in a large sample of plants, which provides reliable data on the often exaggerated fecundity of this species. The study of flowering phenology revealed that protandry is always effective only within individual flowers, where male and female flowering phases are completely separated. In contrast, anther dehiscence in some flowers can occasionally overlap with stigma receptivity in other flowers in the same umbel, providing an opportunity for geitonogamous (i.e. between-flower) selfing. Nevertheless, the potential for selfing in H. mantegazzianum is determined mainly by an overlap in the male and female flowering phases between umbels on the same plant; at least a short overlap between some umbels was observed in 99% of the plants at the Slavkovský les. Although the degree of protandry in H. mantegazzianum favours outcrossing, the opportunity to self may be of crucial importance for an invasive plant, especially if a single plant colonizes a new location. At Slavkovský les, flowering started within one week (from 20 to 27 June 2002) at all 10 sites. The duration of flowering of an individual plantwas on average 36 days,with maximum of 60 days, and increased significantly with the number of umbels on a plant. In the second half of August, the majority of the fruits were ripe and had started to be shed. The beginning of flowering of a plant was significantly negatively correlated with the number of umbels it had – the earlier a plant started to flower the more umbels it had produced. A significant negative relationship was also found between basal diameter and beginning of flowering; plants with large basal diameters started to flower earlier. An average plant at Slavkovský les produced 20,671 fruits. Of these, 44.6% were produced by the terminal umbel, 29.3% by secondary umbels on satellites, 22.6% by secondary umbels on branches and only 3.5% by tertiary umbels. The estimated fruit number of the most fecund plant was 46,470 – compared to an average plant, the proportional contribution of tertiary umbels increased relative to the primary umbel. This study revealed a significant positive relationship between fecundity and plant basal diameter. Although the results of this study indicate that the fecundity of this species is often overestimated in the literature, the number of fruits produced by H. mantegazzianum provides this invasive species with an enormous reproductive capacity.