Within the framework of our studies on hypertension in various rat strains, we have examined the effect of cyclosporin A (CsA) on intracellular calcium signaling under conditions of oxidative stress. For these preliminary experiments, we have chosen isolated hepatocytes of normotensive rats as a model system for the study of the role of intracellular calcium. We used tert-butyl hydroperoxide (t-BHP, 1 mmol.l-1) as an prooxidant agent. When compared to the controls, we found increased levels of cytosolic free calcium concentration (Ca2+i) during 120 min incubation. The preincubation of hepatocytes with CsA in the concentration of 0.5 m mol.l-1 did not change the physiological level of cytosolic calcium. However, a dual action of CsA on elevated Ca2+i was observed during oxidative injury of hepatocytes: while in the first period of incubation CsA increased Ca2+i, CsA reduced the effect of t-BHP on Ca2+i during the next period of incubation. This indicates the ability of CsA to modify oxidative stress, but further studies are necessary to explain these findings., E. Kmoníčková, L. Kameníková, S. Hynie, H. Farghali., and Obsahuje bibliografii
As nitric oxide is considered a mediator of liver oxid ative metabolism during sepsis, we studied the effects of exogenous nitric oxide, produced by NO-donor, (±)-(E)-4-ethyl-2-[(E)-hydroxyimino]-5-nitro-3-hexenamide (NOR-3), on cell viability, urea biosynthesis and oxygen consumption in rat hepatocyte cultures. Nitric oxide release from NOR-3 was studied using 4,5-diaminofluorescein diacetate. Urea levels were measured by the spectrophotometric method. Cell viability was determined by the MTT test and trypan blue exclusion test, whereas oxygen consumption was measured by a polarographic technique. After 2 h treatment, NOR-3 induced an increase in the levels of nitric oxide. After 2 h of treatment and 24 h after the end of the treatment with NOR-3, both cell viability and urea synthesis were significantly reduced in comparison to the controls for NOR-3 concentrations equal to or greater than 50 μM. A reduction in oxygen consumption was observed in hepatocytes after 40 min treatment with 100 μM NOR-3, even if the cell viability was unchanged. Reduction of oxygen consumption is an early indicator of the metabolic alterations in hepatocytes exposed to nitric oxide. These findings suggest that nitric oxide accumulation acts on hepatocyte cultures inducing cell death and reduction of urea synthesis after 2 hours., R. Chimenti, G. Martino, S. Mazzulla, S. Sesti., and Obsahuje bibliografii a bibliografické odkazy