Let R be a commutative ring with nonzero identity and J(R) the Jacobson radical of R. The Jacobson graph of R, denoted by JR, is defined as the graph with vertex set RJ(R) such that two distinct vertices x and y are adjacent if and only if 1 − xy is not a unit of R. The genus of a simple graph G is the smallest nonnegative integer n such that G can be embedded into an orientable surface Sn. In this paper, we investigate the genus number of the compact Riemann surface in which JR can be embedded and explicitly determine all finite commutative rings R (up to isomorphism) such that JR is toroidal., Krishnan Selvakumar, Manoharan Subajini., and Obsahuje seznam literatury
Let $G$ be a connected simple graph on $n$ vertices. The Laplacian index of $G$, namely, the greatest Laplacian eigenvalue of $G$, is well known to be bounded above by $n$. In this paper, we give structural characterizations for graphs $G$ with the largest Laplacian index $n$. Regular graphs, Hamiltonian graphs and planar graphs with the largest Laplacian index are investigated. We present a necessary and sufficient condition on $n$ and $k$ for the existence of a $k$-regular graph $G$ of order $n$ with the largest Laplacian index $n$. We prove that for a graph $G$ of order $n \geq 3$ with the largest Laplacian index $n$, $G$ is Hamiltonian if $G$ is regular or its maximum vertex degree is $\triangle (G)=n/2$. Moreover, we obtain some useful inequalities concerning the Laplacian index and the algebraic connectivity which produce miscellaneous related results.