Sampling of insect communities is very challenging and for reliable interpretation of results the effects of different sampling protocols and data processing on the results need to be fully understood. We compared three different commonly used methods for sampling forest beetles, freely hanging flight-intercept (window) traps (FWT), flight-intercept traps attached to trunks (TWT) and pitfall traps placed in the ground (PFT), in Scots pine dominated boreal forests in eastern Finland. Using altogether 960 traps, forming 576 sub-samples, at 24 study sites, 59760 beetles belonging to 814 species were collected over a period of a month. All of the material was identified to species, with the exception of a few species pairs, to obtain representative data for analyses. Four partly overlapping groups were used in the analyses: (1) all, (2) saproxylic, (3) rare and (4) red-listed species. In terms of the number of species collected TWTs were the most effective for all species groups and the rarer species the species group composed of (groups 1-2-3-4) the larger were the differences between the trap types. In particular, the TWTs caught most red-listed species. However, when sample sizes were standardized FWTs and TWTs caught similar number of species of all species groups. PFTs caught fewer species of all species groups, whether the sample sizes were standardized or not. In boreal forests they seem to be unsuitable for sampling saproxylic, rare and red-listed species. However, the PFTs clearly sampled different parts of species assemblages than the window traps and can be considered as a supplementary method. The abundance distribution of saproxylic species was truncated lognormal in TWT and pooled material, whereas unclassified material failed to reveal lognormal distribution in all the trap types and pooled material. The results show that even in boreal forests sample sizes of at least thousands, preferably tens of thousands of individuals, collected by a high number of traps are needed for community level studies. Relevant ecological classification of material is also very important for reliable comparisons. Differences in the performance of trap types should be considered when designing a study, and in particular when evaluating the results.
The spider community of a beech forest on limestone was studied for one year using four sampling techniques: emergence traps, pitfall traps, soil samples, and arboreal eclectors. 87 spider species were recorded. Emergence traps and arboreal eclectors were particularly efficient in detecting spider species. Dominance identity (percentage similarity) was highest for catches from emergence traps and pitfall traps. Species recorded were assigned to various ecological groups. In terms of proportional abundance, representation of the ecological groups varied and appeared related to the sampling method used. Stratum type and type of prey capture strategy accounted for >60% of the variance in the catch results (canonical correspondence analysis). Proportional abundance of funnel-web spiders was much higher in pitfall trap catches (31.7%) than in any other method (1.0-11.6%).
The Southern birch mouse, Sicista subtilis (Pallas, 1773), is one of the rarest and least known small mammal species in Europe. At present, the occurrence of its subspecies, the S. subtilis trizona (Frivaldszky, 1865), is confined to Hungary. The last living individual of this rare subspecies was caught in 1926. Prior to 2006, individuals were detected only from owl-pellets, but at fewer and fewer localities. After an 80 year hiatus in the records, the first living specimen was trapped on 21st June, 2006 in the Borsodi Mezőség (NE Hungary), at a location well known from previous skeletal records. In the same year, another 42 specimens were trapped. Recapture occurred only three times. The last three specimens were captured on 22nd September in 2006. So far S. subtilis trizona has occurred mainly in weed vegetation Carduetum acanthoidis and in its edge. These patches mostly border on abandoned plough-land vegetation (Convolvulo–Agropyretum repentis) dominated by annual grasses. The majority of the habitat had been ploughed a short time earlier (approx. 10–15 years), and barns and other farm-buildings occupying smaller part of it.
Clear-cutting, the main method of harvesting in many forests in the world, causes a series of dramatic environmental changes to the forest habitat and removes habitat resources for arboreal and epigeal species. It results in considerable changes in the composition of both plant and animal communities. Ants have many critical roles in the maintenance and functioning of forest ecosystems. Therefore, the response of ants to clear-cutting and the time it takes for an ant community to recover after clear-cutting are important indicators of the effect of this harvesting technique on the forest ecosystem. We investigated ground-dwelling ant communities during secondary succession of deciduous forests in Transylvania, Romania. Using space-for-time substitution, we explored a chronosequence from clear-cuts to mature forests (> 120 years). The object was to determine if cutting has measurable effects on ant community structure, and if ant species richness differs between successional stages. We recorded a total of 24 species of ants, 11 characteristic of forests and seven of open landscape. Ant species richness was higher in clear-cuts compared to closed-canopy and old stands. Number of ant individuals was highest in young age classes and lowest in closed-canopy age classes. There was no drastic change in species richness during the succession, however differences in community composition at different stages were recorded. Open landscape species are able to rapidly colonize following disturbance but disappear when the forest sites mature and many forest ant species are capable of surviving clear cutting., Ioan Tăuşan, Jens Dauber, Maria R. Trică, Bálint Markó., and Obsahuje bibliografii