Competition is a major force organizing ant communities and results in co-occurring species evolving different strategies for foraging and use of space. Territorial species, as top dominants exclude each other, while shaping the local ant communities both qualitatively and quantitatively. In this study we examined how two territorial species, Formica polyctena and Lasius fuliginosus, can coexist in adjacent territories over long periods of time, and whether they affect co-occurring species of ants in different ways. Field observations in the absence and in the presence of baits were carried out around a L. fuliginosus nest complex surrounded by a polydomous F. polyctena colony in S Finland in 2007–2009. Both species controlled their territories, but were affected by changes in the abundance of the other species and the distance from L. fuliginosus’ main nest. They did not have the same effect on the subordinate species in the absence of baits, but the abundance of Myrmica spp. recorded at baits was negatively affected by both of the territorial species. The preferences of the different species for the artificial food sources differed: L. fuliginosus and F. polyctena preferred tuna to honey and Myrmica spp. honey to tuna. More individuals of the subordinate species were recorded in the territory of F. polyctena than of L. fuliginosus, although conflicts with this territorial species were also recorded. During the three years of the study almost no overlaps in the territories of the two territorial species were recorded, and there were mostly minor shifts in the boundaries of the territories. Differences between the two territorial species in their use of space and competitive effects ensured their coexistence at this particular site in Finland., Wojciech Czechowski ... [et al.]., and Obsahuje seznam literatury
It is commonly held that Central Europe harbours but a single harvester ant species, namely Messor structor. Recently discovered bionomic differences between two Central European populations, which may reflect interspecific variation, cast doubt on this assumption. In the present study we test alternative hypotheses - one versus two harvester ant species in Central Europe and adjacent regions - by investigating the genetic diversity of ants determined as M. structor or close to it ("M. cf. structor"). Sequences of the mitochondrial COI gene revealed two major lineages of different but partially overlapping geographic distributions, both occurring in Central Europe. The existence of a cryptic species within M. cf. structor is the most plausible interpretation, since the sequence divergence between the two major lineages equals those between M. capitatus, M. concolor and M. bouvieri. The phylogenetic analyses revealed a distinct substructuring for both of the detected major lineages and the possible existence of additional cryptic species.
Clear-cutting, the main method of harvesting in many forests in the world, causes a series of dramatic environmental changes to the forest habitat and removes habitat resources for arboreal and epigeal species. It results in considerable changes in the composition of both plant and animal communities. Ants have many critical roles in the maintenance and functioning of forest ecosystems. Therefore, the response of ants to clear-cutting and the time it takes for an ant community to recover after clear-cutting are important indicators of the effect of this harvesting technique on the forest ecosystem. We investigated ground-dwelling ant communities during secondary succession of deciduous forests in Transylvania, Romania. Using space-for-time substitution, we explored a chronosequence from clear-cuts to mature forests (> 120 years). The object was to determine if cutting has measurable effects on ant community structure, and if ant species richness differs between successional stages. We recorded a total of 24 species of ants, 11 characteristic of forests and seven of open landscape. Ant species richness was higher in clear-cuts compared to closed-canopy and old stands. Number of ant individuals was highest in young age classes and lowest in closed-canopy age classes. There was no drastic change in species richness during the succession, however differences in community composition at different stages were recorded. Open landscape species are able to rapidly colonize following disturbance but disappear when the forest sites mature and many forest ant species are capable of surviving clear cutting., Ioan Tăuşan, Jens Dauber, Maria R. Trică, Bálint Markó., and Obsahuje bibliografii