In a glasshouse, Bemisia tabaci infestation largely reduced response of photosynthesis to irradiance and CO2 concentration of Mikania micrantha compared with the non-infested control (C) ones. The maximum irradiance-saturated photosynthetic rate
(Pmax) and saturation irradiance (SI) of the infested M. micrantha were only 21.3 % and 6.5 % of the C-plants, respectively. B. tabaci infestation led to the reduction of contents of chlorophyll and carotenoids in M. micrantha, which was accompanied with the decrease of actual photosystem 2 (PS2) efficiency (ΦPS2), efficiency of excitation energy capture by open PS2 reaction centres (Fv'/Fm'), electron transport rate (ETR), and photochemical quenching (qP). Moreover, superoxide dismutase and catalase activities significantly decreased while proline and glutathione contents significantly increased in infested M. micrantha. Hence B. tabaci infestation not only induced direct damage of photosynthetic apparatus but also altered the antioxidant enzymes activities in M. micrantha, which might as consequences accelerate senescence of this weed. and L. L. Zhang, D. Z. Wen.
Contents of chlorophylls and carotenoids in yellow-green mutant Biao 810S were approximately half those in control type 810S. Biao 810S had fewer grana lamellae and looser structure than 810S, lower volume of starch granules in chloroplasts, but under high temperature and high irradiance the net photosynthetic rate (PN) of Biao 810S was higher than that of 810S. The chlorophyll fluorescence parameter Fv/Fm of Biao 810S was little higher and photochemical quenching qP was obviously higher than those of 810S. No significant differences in PN and biomass were observed in their hybrid combination. The yellow-green mutant phenotype may be a useful genetic marker of P(T)GMS rice used for hybrid seed production. and L.-J. Ou ... [et al.].
In Evernia prunastri, photosynthetic gas exchange was saturated with yellow radiation (SOX) at 400 μmol m-2s-1, and then red (R), far-red (FR), or blue (B) radiations at irradiance of 15 μmol m-2s-1 were added. Because of photosynthesis saturation, any stimulation or decay in CO2 assimilation by any radiation quality could be attributed to the involvement of a non-photosynthetic photoreceptor. Thus CO2 assimilation, effective quantum yield, and photochemical quenching were enhanced when R was included, and decreased with FR. Blue radiation completely abolished CO2 fixation. Hence different spectral radiation qualities may activate non-photosynthetic photoreceptors such as phytochrome and blue photoreceptors, which are involved in regulating the photosynthetic activity in E. prunastri. and M. Segovia, F. L. Figueroa.
To assess the relationship between chlorophyll (Chl) fluorescence (CF) and photosynthetic pigments, soybean was grown under varying phosphorus (P) nutrition at ambient and elevated CO2 (EC). The EC stimulated, but P deficiency decreased plant height, node numbers, and leaf area concomitantly with the rates of stem elongation, node addition, and leaf area expansion. Under P deficiency, CF parameters and pigments declined except that carotenoids (Car) were relatively stable indicating its role in photoprotection. The CF parameters were strongly related with Chl concentration but not with Chl a/b or Car. However, total Chl/Car showed the strongest association with CF parameters such as quantum efficiency and yield of photosystem II. This relationship was not affected by CO2 treatment. The high correlation between CF and total Chl/Car underscores the significance of the quantification of both, Chl and Car concentrations, to understand the photochemistry and underlying processes of photoprotection and mechanisms of excess energy dissipation in a given environment., S. K. Singh, V. R. Reddy, D. H. Fleisher, D. J. Timlin., and Obsahuje bibliografii
Fluorescence parameters obtained during steady-state electron transport are frequently used to evaluate photosynthetic efficiency of plants. We studied the behaviour of those parameters as a function of irradiance-adapted fluorescence yields FS and F'M. Applied simulations showed that photochemical quenching evaluated by qP is greatly influenced by the steady-state fluorescence level (FS), and that its evolution is not complementary to non-photochemical quenching (qN). On the other hand, the relative photochemical and non-photochemical quenching coefficients (qP(rel) and qN(rel)) proposed by Buschmann (1995) represent better the balance between the energy dissipation pathways. However, these relative parameters are also non-linearly related when the FS level is varied. We investigated the application of a new parameter, the relative unquenched fluorescence (UQF(rel)) which takes into account the fraction of non-quenched fluorescence yield (FS), which is related to closed photosystem 2 reaction centres not participating in electron transport. By using computer simulations and real in vivo measurements, we found that this new parameter is complementary to qP(rel) and qN(rel), which may facilitate the use of PAM fluorescence as diagnostic tool in environmental studies. and P. Juneau, B. R. Green, P. J. Harrison.
Pisum sativum (L.) plants were grown under "white" luminescent lamps, W [45 µ mol(quantum) m-2 s-1] or under the same irradiation supplemented with narrow spectrum red light-emitting diodes (LEDs), RE [λmax = 660 nm, Δλ = 20 nm, 40 µmol(quantum) m-2 s-1]. Significant differences in the chlorophyll (Chl) a fluorescence parameters, degree of State 1-State 2 transition, and the pigment-protein contents were found in plants grown under differing spectral composition. Addition of red LEDs to the "white light" resulted in higher effective quantum yield of photosystem 2 (PS2), i.e. F'v/F'm, linear electron transport (ϕPS2), photochemical quenching (qP), and lower non-photochemical quenching (qN as well as NPQ). The RE plants were characterised by higher degree State 1-State 2 transition, i.e. they were more effective in radiant energy utilisation. Judging from the data of "green" electrophoresis of Chl containing pigment-protein complexes of plants grown under various irradiation qualities, the percentage of Chl in photosystem 2 (PS2) reaction centre complexes in RE plants was higher and there was no difference in the total Chl bound with Chl-proteins of light-harvesting complexes (LHC2). Because the ratio between oligomeric and monomeric LHC2 forms was higher in RE plants, we suggest higher LHC2 stability in these ones. and N. M. Topchyi ... [et al.].