Plants experience multiple abiotic stresses during the same growing season. The implications of submergence with and without saline water on growth and survival were investigated using four contrasting rice cultivars, FR13A (submergence-tolerant, salinity-susceptible), IR42 (susceptible to salinity and submergence), and Rashpanjor and AC39416 (salinity-tolerant, submergence-susceptible). Though both FR13A and IR42 showed sensitivity to salinity, FR13A exhibited higher initial biomass as well as maintained greater dry mass under saline condition. Greater reduction of chlorophyll (Chl) contents due to salinity was observed in the susceptible cultivars, including FR13A, compared to the salinity-tolerant cultivars. Exposure of plants to salinity before submergence decreased the survival chance under submergence. Yet, survival percentage under submergence was greater in FR13A compared to other cultivars. Generally, the reduction in the Chl content and damage to PSII were higher under the submergence compared to salinity conditions. The submergence-tolerant cultivar, FR13A, maintained greater quantities of Chl during submergence compared to other cultivars. Quantification of the Chl a fluorescence transients (JIP-test) revealed large cultivar differences in the response of PSII to submergence in saline and nonsaline water. The submergence-tolerant cultivar maintained greater chloroplast structural integrity and functional ability irrespective of the quality of flooding water., R. K. Sarkar, Anuprita Ray., and Obsahuje seznam literatury
We studied the photosynthetic performance of sterile and fertile sporophytes in a natural population of the fern Dryopteris affinis growing within a riparian forest (Central Italy) using chlorophyll (Chl) a fluorescence transients, the OJIP phase, where O is for the minimum fluorescence, P is for the peak (the maximum), and J and I are inflections. The “vitality” of the samples was assessed by the maximum quantum yield of primary photochemistry obtained indirectly from the fluorescence data (Fv/Fm); in the same way, the so-called performance index (PIABS) was obtained from fluorescence data. The photosynthetic performance (inferred from PIABS) of D. affinis changed significantly with the seasonal development of the fronds. The highest photosynthetic performance was recorded in the summer, corresponding to the period of spore release. The photosynthetic performance decreased in the winter, down to the minimal values of senescent fronds reached at the end of the seasonal cycle (May-June). On the whole, during the seasonal development, sterile and fertile fronds had a similar photosynthetic behaviour, as inferred from fluorescence data. At the end of spore maturation and dispersal (September-October), the fertile fronds showed somewhat lower photosynthetic performance than the sterile fronds, as revealed by PIABS. Being a long-lived fern, confined to humid and undisturbed sites in the Mediterranean, D. affinis deserves to be further investigated as a potential indicator of ecological continuity in Mediterranean riparian forests., L. Paoli, M. Landi., and Obsahuje bibliografii