There is increasing recognition of the occurrence of non-native species that are invasive and potentially contribute to biodiversity loss. A two-year camera trap survey was undertaken on Mountain Mosor, Croatia to determine the daily and seasonal activity patterns of recently introduced non-native aoudad (Ammotragus lervia). Aoudad were most active in open rocky habitats and least active in forest habitats. The effect of habitat on the recorded number of aoudad was significant, while the effects of month and the interaction month × habitat were not. The results showed a typical bimodal activity pattern of aoudad, with a modest peak in activity between 5:00 and 9:00 a.m., and a second, more pronounced activity peak between 5:00 and 7:00 p.m. Since the native habitat of aoudad is similar to that in the Mediterranean region, the inferred range of daily and seasonal activities show that the species is well adapted to the new habitat.
A complete list of all alien taxa ever recorded in the flora of the Czech Republic is presented as an update of the original checklist published in 2002. New data accumulated in the last decade are incorporated and the listing and status of some taxa are reassessed based on improved knowledge. Alien flora of the Czech Republic consists of 1454 taxa listed with information on their taxonomic position, life history, geographic origin (or mode of origin, distinguishing anecophyte and hybrid), invasive status (casual; naturalized but not invasive; invasive), residence time status (archaeophyte vs neophyte), mode of introduction into the country (accidental, deliberate), and date of the first record. Additional information on species performance that was not part of the previous catalogue, i.e. on the width of species’ habitat niches, their dominance in invaded communities, and impact, is provided. The Czech alien flora consists of 350 (24.1%) archaeophytes and 1104 (75.9%) neophytes. The increase in the total number of taxa compared to the previous catalogue (1378) is due to addition of 151 taxa and removal of 75 (39 archaeophytes and 36 neophytes), important part of the latter being the reclassification of 41 taxa as native, mostly based on archaeobotanical evidence. The additions represent taxa newly recorded since 2002 and reported in the national literature; taxa resulting from investigation of sources omitted while preparing the previous catalogue; redetermination of previously reported taxa; reassessment of some taxa traditionally considered native for which the evidence suggests the opposite; and inclusion of intraspecific taxa previously not recognized in the flora. There are 44 taxa on the list that are reported in the present study for the first time as aliens introduced to the Czech Republic or escaped from cultivation: Abies concolor, A. grandis, A. nordmanniana, Avena sterilis subsp. ludoviciana, A. ×vilis, Berberis julianae, B. thunbergii, Bidens ferulifolius, Buddleja alternifolia, Buglossoides incrassata subsp. splitgerberi, Buxus sempervirens, Corispermum declinatum, Cotoneaster dielsianus, C. divaricatus, Euphorbia myrsinites, Gleditsia triacanthos, Helleborus orientalis, Hieracium heldreichii, Koelreuteria paniculata, Lonicera periclymenum, Lotus ornithopodioides, Malus baccata, M. pumila, Miscanthus sacchariflorus, Morus alba, Muscari armeniacum, Paeonia lactiflora, Pennisetum alopecuroides, Pinguicula crystallina subsp. hirtiflora, P. grandiflora subsp. rosea, Podophyllum hexandrum, Pyracantha coccinea, Rhodotypos scandens, Rumex patientia × R. tianschanicus ‘Uteuša’, Salix cordata, Sarracenia purpurea, Sasa palmata ‘Nebulosa’, Scolymus maculatus, Spiraea japonica, Tagetes tenuifolia, Thuja occidentalis, Trifolium badium, Vaccinium corymbosum and Viburnum rhytidophyllum. All added and deleted taxa are commented on. Of the total number of taxa, 985 are classified as casuals, 408 as naturalized but not invasive, and 61 as invasive. The reduction in the number of invasive taxa compared to the previous catalogue is due to a more conservative approach adopted here; only taxa that currently spread are considered invasive. Casual taxa are strongly overrepresented among neophytes compared to archaeophytes (76.7% vs 39.4%), while naturalized but non-invasive taxa follow the reversed pattern (18.8% vs 57.4). However, these two groups do not significantly differ in the proportion of invasive taxa. Of introduced neophytes, 250 taxa (22.6%) are considered vanished, i.e. no longer present in the flora, while 23.3% became naturalized, and 4.5% invasive. In addition to the traditional classification based on introduction–naturalization–invasion continuum, taxa were classified into 18 population groups based on their long-term trends in metapopulation dynamics in the country, current state of their populations, and link to the propagule pressure from cultivation. Mapping these population groups onto the unified framework for biological invasions introduced by Blackburn et al. in 2011 made it possible to quantify invasion failures, and boom-and-busts, in the Czech alien flora. Depending on inclusion criteria (whether or not extinct/vanished taxa and hybrids are considered), alien taxa ever recorded in the Czech Republic contribute 29.7–33.1% to the total country’s plant diversity; taking into account only naturalized taxa, a permanent element of the country’s flora, the figure is 14.4–17.5%. Analysis of the dates of the first record, known for 771 neophytes, indicates that alien taxa in the flora have been increasing at a steady pace without any distinct deceleration trend; by extrapolating this data to all 1104 neophytes recorded it is predicted that the projected number would reach 1264 in 2050. Deliberate introduction was involved in 747 cases (51.4%), the remaining 48.6% of taxa are assumed to have arrived by unintentional pathways. Archaeophytes are more abundant in landscapes, occupy on average a wider range of habitat types than neophytes, but reach a lower cover in plant communities. The alien flora is further analysed with respect to representation of genera and families, origin and life history. and Nevejdou se dvě poslední jména autorů
The sika deer (Cervus nippon) is native to Japan and East Asia and has been introduced almost worldwide. Despite the wide distribution of the species, only few studies on its home range in non-native areas have been conducted. We focused on home range size and its seasonal and spatial dynamics in an introduced sika deer population in the Doupovské hory Mts., north-western Czech Republic. The mean home range size, obtained from ten subadult and adult males, was 3620 ha using the minimum convex polygon method, 1163 ha using the Brownian bridges method, and 819 ha using kernel estimation. The mean intra-individual home range overlap from
month to month was about 72 %, but decreased to 28 % when calculated for three-month periods. The unusually large home range sizes observed can be explained by a relatively low population density of the sika deer in the study area and possibly by the non-territorial mating strategy of males. The high values of seasonal home range overlap together with the time series of the monthly home range maps indicate some positional shifts but do not support presence of seasonal migration.
Land use has direct and indirect effects on the environmental conditions, which play a major role in the dynamics and changes in landscape. In Central Europe, the hemeroby approach is broadly used to quantify human impact on habitats and their vegetation. In this paper, the hemeroby approach was adopted for studying the rural settlements in the East Asian Republic of Korea. Flora and habitats of eight villages were analysed. The habitats were classified according to the five degrees on the hemeroby scale (oligo-, β-meso-, α-meso-, eu-, and polyhemerobic). Hemeroby indicator values were derived for species that were typical of a specific level of hemeroby. Habitats with the same level of hemeroby were grouped. The highest species number was found in habitats that were only moderately influenced by man. This corresponds to the intermediate disturbance hypothesis. The flora of habitats that were subject to the highest level of human impact (polyhemerobic)was characterized by a high proportion of annual species, but unexpectedly not by the highest proportion of non-native species.
A series of maps showing the level of invasion of the Czech Republic by alien plants was developed based on a quantitative assessment of the level of invasion of 35 terrestrial habitat types at different altitudes. The levels of invasion were quantified for 18,798 vegetation plots, using two measures: proportion of the species that are aliens and total cover of alien species. Separate assessments were made for archaeophytes and neophytes. Within each habitat, the level of invasion was related to altitude using generalized linear models. The level of invasion, depending on the measure used, decreased with altitude in 16 out of 20 habitats for archaeophytes and 18 out of 23 for neophytes. In two habitats, one measure of the level of invasion increased with altitude for archaeophytes. The values of the level of invasion predicted by generalized linear models for particular combinations of habitats and altitudes were projected onto a land-cover map and digital elevation map of the country. Four maps showing the level of invasion were produced, based on the proportion of the species that are archaeophytes or neophytes, and cover of archaeophytes and neophytes. The maps show that both archaeophytes and neophytes are most common in lowland agricultural and urban areas, whereas they are sparsely represented in mountainous areas. At middle altitudes, agricultural areas are more invaded than forested areas. Outside agricultural and urban areas, high levels of invasion are found especially in lowland sandy areas and river corridors.