Whereas most plant suspension cultures are grown heterotrophically in the presence of sugars, a limited number of photoautotrophic cultures have been established which are able to grow with CO2 as the sole carbon source. Photoautotrophic cultures are useful to address various aspects of photosynthesis, source-sink regulation, nitrogen metabolism, production of secondary metabolites, and defence responses. The homogenous populations of these cultures provide an ideal and sensitive system to obtain reproducible results. The availability of an increasing number of photoautotrophic cultures from different economically important species provides the basis also for practical applications. and T. Roitsch, A. K. Sinha.
In order to evaluate the effect of static magnetic field (SMF) on morphological and physiological responses of soybean to water stress, plants were grown under well-watered (WW) and water-stress (WS) conditions. The adverse effects of WS given at different growth stages was found on growth, yield, and various physiological attributes, but WS at the flowering stage severely decreased all of above parameters in soybean. The result indicated that SMF pretreatment to the seeds significantly increased the plant growth attributes, biomass accumulation, and photosynthetic performance under both WW and WS conditions. Chlorophyll a fluorescence transient from SMF-treated plants gave a higher fluorescence yield at J-I-P phase. Photosynthetic pigments, efficiency of PSII, performance index based on absorption of light energy, photosynthesis, and nitrate reductase activity were also higher in plants emerged from SMF-pretreated seeds which resulted in an improved yield of soybean. Thus SMF pretreatment mitigated the adverse effects of water stress in soybean., L. Baghel, S. Kataria, K. N. Guruprasad., and Obsahuje bibliografii