Photosystem II (PSII) photochemistry was examined by chlorophyll (Chl) a fluorescence analysis in high-yield rice LYPJ flag leaves during senescence. Parameters deduced from the JIP-test showed that inhibition of the donor side of PSII was greater than that of the acceptor side in hybrid rice LYPJ. The natural senescence process was accompanied by the increased inactivation of oxygen-evolving complex (OEC) and a lower total number of active reaction centers per absorption. It indicated that the inhibition of electron transport caused by natural senescence might be caused partly by uncoupling of the OEC and/or inactivation of PSII reaction centers. Chl fluorescence parameters analyzed in this study suggested that energy dissipation was enhanced in order to protect senescent leaves from photodamage. Nevertheless, considerably reduced PSI electron transport activity was observed at the later senescence. Thus, natural senescence inhibited OEC-PSII electron transport, but also significantly limited the PSII-PSI electron flow., Y. W. Wang, C. Xu, C. F. Lv, M. Wu, X. J. Cai, Z. T. Liu, X. M. Song, G. X. Chen, C. G. Lv., and Seznam literaruty
In order to evaluate the effect of static magnetic field (SMF) on morphological and physiological responses of soybean to water stress, plants were grown under well-watered (WW) and water-stress (WS) conditions. The adverse effects of WS given at different growth stages was found on growth, yield, and various physiological attributes, but WS at the flowering stage severely decreased all of above parameters in soybean. The result indicated that SMF pretreatment to the seeds significantly increased the plant growth attributes, biomass accumulation, and photosynthetic performance under both WW and WS conditions. Chlorophyll a fluorescence transient from SMF-treated plants gave a higher fluorescence yield at J-I-P phase. Photosynthetic pigments, efficiency of PSII, performance index based on absorption of light energy, photosynthesis, and nitrate reductase activity were also higher in plants emerged from SMF-pretreated seeds which resulted in an improved yield of soybean. Thus SMF pretreatment mitigated the adverse effects of water stress in soybean., L. Baghel, S. Kataria, K. N. Guruprasad., and Obsahuje bibliografii