The effects of awn removal on ear gas exchange in four barley lines (Morex, Harrington, Steptoe, and TR306) were studied under a controlled environment using a Before-After Control-Impact Paired (BACIP) experimental design. From ear emergence to grain maturity, plants were grown in pots at either 60 or 90 % of soil water holding capacity. Gas-exchange measurements of ears were made 9 and 10 d after anthesis (DAA). On 11 DAA, awn removal was performed on half of the ears in each pot, followed by measurements on both intact and de-awned ears on 12 and 13 DAA. Net photosynthetic (PN) and transpiration (E) rates decreased significantly with awn removal, but dark respiration (RD) rate was not affected. We estimated for each ear a temperature-adjusted respiration rate (Ra) from RD. When we corrected PN with Ra, we found that rates of spikelet photosynthesis were largely underestimated. Moderate water stress had minimal effect on gas exchange of bracts and awns of the barley ear. Barley lines did not differ for any individual gas-exchange parameter. and Q. Z. Jiang ... [et al.].
The effects of salinity (sea water at 0 ‰ versus 30 ‰) on gross rates of O2 evolution (JO2) and net rates of CO2 uptake (PN) were measured in the halotolerant estuarine C4 grasses Spartina patens, S. alterniflora, S. densiflora, and Distichlis spicata in controlled growth environments. Under high irradiance, salinity had no significant effect on the intercellular to ambient CO2 concentration ratio (Ci/Ca). However, during photosynthesis under limiting irradiance, the maximum quantum efficiency of CO2 fixation decreased under salinity across species, suggesting there is increased leakage of the CO2 delivered to the bundle sheath cells by the C4 pump. Growth under salinity did not affect the maximum intrinsic efficiency of photosystem 2, PS2 (FV/FM) in these species, suggesting salinity had no effect on photosynthesis by inactivation of PS2 reaction centers. Under saline conditions and high irradiance, PN was reduced by 75 % in Spartina patens and S. alterniflora, whereas salinity had no effect on PN in S. densiflora or D. spicata. This inhibition of PN in S. patens and S. alterniflora was not due to an effect on stomatal conductance since the ratio of
Ci/Ca did not decrease under saline conditions. In growth with and without salt, PN was saturated at -500 µmol(quantum) m-2 s-1 while JO2 continued to increase up to full sunlight, indicating that carbon assimilation was not tightly coupled to photochemistry in these halophytic species. This increase in alternative electron flow under high irradiance might be an inherent function in these halophytes for dissipating excess energy. and B. R. Maricle ... [et al.].