This contribution deals with the numerical simulation of dislocation dynamics. Dislocations are described by means of the evolution of a family of closed or open smooth curves Γ(t):S→R2, t≧0. The curves are driven by the normal velocity v which is the function of curvature κ and the position. The evolution law reads as: v=−κ+F. The motion law is treated using direct approach numerically solved by two schemes, i. e., backward Euler semi-implicit and semi-discrete method of lines. Numerical stability is improved by tangential redistribution of curve points which allows long time computations and better accuracy. The results of dislocation dynamics simulation are presented (e. g., dislocations in channel or Frank-Read source). We also introduce an algorithm for treatment of topological changes in the evolving curve.
The paper is concerned with the graph formulation of forced anisotropic mean curvature flow in the context of the heteroepitaxial growth of quantum dots. The problem is generalized by including anisotropy by means of Finsler metrics. A semi-discrete numerical scheme based on the method of lines is presented. Computational results with various anisotropy settings are shown and discussed.
Stability and convergence of the linear semi-implicit discrete duality finite volume (DDFV) numerical scheme in 2D for the solution of the regularized curvature driven level set equation is proved. Numerical experiments concerning comparison with exact solution and image filtering problem using proposed scheme are included.