Blood films were examined from 154 wild and captive tortoises from four provinces of South Africa, including Gauteng, Kwazulu-Natal, North West and Western Cape. The five species of chelonians studied were Chersina angulata (Schweigger), Kinixys belliana belliana (Gray), K. lobatsiana Power, K. natalensis Hewitt, and Stigmochelys pardalis (Bell). Two species of haemogregarines, previously reported from Mozambique, were identified in blood films, namely Haemogregarina fitzsimonsi Dias, 1953 and Haemogregarina parvula Dias, 1953. Additional stages of development (trophozoites and probable meronts, merozoites and immature gamonts) in blood preparations from South Africa warranted the redescription of H. fitzsimonsi. A variety of hosts and broad host distribution range were observed for this haemogregarine, with all five species of tortoises parasitized, wild and captive, from all four provinces, in all seasons. In contrast, only two individuals of K. b. belliana and one S. pardalis, all three captive in Kwazulu-Natal, contained H. parvula with encapsulated stages resembling those of Hemolivia mauritanica (Sergent et Sergent, 1904). For H. fitzsimonsi, parasite prevalences, but not parasitaemias, were significantly higher in captive than wild S. pardalis; captive female S. pardalis also showed a significantly greater prevalence of infection than males, but younger, lighter hosts were not significantly more heavily parasitized than older, heavier individuals. The ticks, Amblyomma marmoreum Koch, 1844 and A. sylvaticum (De Geer, 1778), found attached to some tortoises, may prove to be definitive hosts for the two species of haemogregarines observed.
Archived blood smears from 32 of 113 fishes in 18 families and 12 orders, trawled from deep North Atlantic waters off the Cape Verde Islands in 1999 and over the Porcupine Seabight in 2001 were found to harbour haematozoans. These included four species of haemogregarines (Adeleorina, Haemogregarinidae) and a species of trypanosome (Trypanosomatina, Trypanosomatidae) located in Porcupine Seabight fishes. Also present were Haemohormidium-like structures of uncertain status found in samples from this location and from the Cape Verde Islands. Although material was limited, two of the haemogregarines were provisionally named Desseria harriottae sp. n. from Harriotta raleighana Goode et Bean (Chimaeriformes, Rhinochimaeridae), and Haemogregarina bathysauri sp. n. from Bathysaurus ferox Günther (Aulopiformes, Bathysauridae). The two remaining haemogregarines were identified as Desseria marshalllairdi (Khan, Threlfall et Whitty, 1992) from Halosauropsis macrochir (Günther) (Notacanthiformes, Halosauridae), and Haemogregarina michaeljohnstoni (Davies et Merrett, 2000) from Cataetyx laticeps Koefoed (Ophidiformes, Bythitidae). The name H. michaeljohnstoni was proposed to replace Haemogregarina johnstoni Davies et Merrett, 2000 from C. laticeps and to avoid confusion with Hepatozoon johnstoni (Mackerras, 1961) Smith, 1996 from varanid lizards, originally named Haemogregarina johnstoni Mackerras, 1961. The trypanosome formed a mixed parasitaemia with D. harriottae in H. raleighana and was provisionally named Trypanosoma harriottae sp. n. No blood parasites had been described previously from cartilaginous fishes of the Holocephali, making the finds in H. raleighana unique. Haemohormidium-like structures were located in erythrocytes in one fish, Coryphaenoides armatus (Hector), among the Cape Verde Islands samples and in 12 species of fishes from the Porcupine Seabight; all these hosts were bony fishes. Finally, the haemogregarine species listed in the genus Desseria Siddall, 1995 were reassessed. Of the original list of 41 species, 30 were retained and 5 species added, including D. harriottae, so that the genus now contains 35 species.
This paper reviews past, current and likely future research on the fish haemogregarine, Haemogregarina bigemina Laveran et Mesnil, 1901. Recorded from 96 species of fishes, across 70 genera and 34 families, this broad distribution for H. bigemina is questioned. In its type hosts and other fishes, the parasite undergoes intraerythrocytic binary fission, finally forming mature paired gamonts. An intraleukocytic phase is also reported, but not from the type hosts. This paper asks whether stages from the white cell series are truly H. bigemina. A future aim should be to compare the molecular constitution of so-called H. bigemina from a number of locations to determine whether all represent the same species. The transmission of H. bigemina between fishes is also considered. Past studies show that young fish acquire the haemogregarine when close to metamorphosis, but vertical and faecal-oral transmission seem unlikely. Some fish haemogregarines are leech-transmitted, but where fish populations with H. bigemina have been studied, these annelids are largely absent. However, haematophagous larval gnathiid isopods occur on such fishes and may be readily eaten by them. Sequential squashes of gnathiids from fishes with H. bigemina have demonstrated development of the haemogregarine in these isopods. Examination of histological sections through gnathiids is now underway to determine the precise development sites of the haemogregarine, particularly whether merozoites finally invade the salivary glands. To assist in this procedure and to clarify the internal anatomy of gnathiids, 3D visualisation of stacked, serial histological sections is being undertaken. Biological transmission experiments should follow these processes.
Two experimental trials were performed to elucidate the role of rodents in the life cycle of Hepatozoon species using snakes as intermediate hosts. In one trial, two ball pythons, Python regius Shaw, 1802 were force fed livers of laboratory mice previously inoculated with sporocysts of Hepatozoon ayorgbor Sloboda, Kamler, Bulantová, Votýpka et Modrý, 2007. Transmission was successful in these experimentally infected snakes as evidenced by the appearance of intraerythrocytic gamonts, which persisted until the end of trial, 12 months after inoculation. Developmental stages of haemogregarines were not observed in histological sections from mice. In another experimental trial, a presence of haemogregarine DNA in mice inoculated with H. ayorgbor was demonstrated by PCR in the liver, lungs and spleen.
To date, only a few species of Hepatozoon Miller, 1908 have been described from amphibians and reptiles of South Africa, including two species from anuran hosts, three from saurians, one from chelonians, and two from ophidians. Hepatozoon bitis (Fantham, 1925) and Hepatozoon refringens (Sambon et Seligmann, 1907), parasitising Bitis arientans (Merrem) and Pseudoaspis cana (Linnaeus), respectively, were described in the early 1900s and since then there have been no further species of Hepatozoon described from snakes in South Africa. Blood smears, used in peripheral blood haemogregarine stage morphometrics, and whole blood used in molecular characterisation of haemogregarines were collected from the caudal vein of six snakes of three species, namely Philothamnus hoplogaster (Günther), Philothamnus semivariegatus (Smith) and Philothamnus natalensis natalensis (Smith). For comparison, a comprehensive table summarising available information on species of Hepatozoon from African snakes is presented. Haemogregarines found infecting the snakes from the present study were morphologically and molecularly different from any previously described from Africa and are thus here described as Hepatozoon angeladaviesae sp. n. and Hepatozoon cecilhoarei sp. n. Both haemogregarine species were observed to cause considerable dehaemoglobinisation of the host cell, in case of infection with H. angeladaviesae resulting in a characteristic peripheral undulation of the host cell membrane and karyorrhexis. To the authors' knowledge, these are the first haemogregarines parasitising snakes of the genus Philothamnus Smith described using both morphological and molecular characteristics in Africa., Courtney Antonia Cook, Edward Charles Netherlands, Johann van As, Nico Jacobus Smit., and Obsahuje bibliografii