Estimation of hydraulic and geometric parameters of a gravel-bed river such as dimensions of bedforms is very difficult task, although they play a fundamental role in river engineering projects. One of the methods to get essential information regarding the bedform characteristics is to find the relations between the flow parameters and bedform dimensions. We conducted this field study in the Babolroud River in northern Iran to investigate the application of double averaged method in unspecific gravel bedforms to evaluate friction factor. Using data collected from several river reaches with total length of 356 m of a gravel-bed river, the relationship between bedform geometry (height and the length of bedforms) and flow parameters including shear velocity, transport stage parameter with friction factor is investigated.
Different methods for estimating bedforms dimensions are examined to assess the ability of predicting bedform parameters (length and height) in a gravel-bed river. Using bedform parameters, the contribution of particle and form friction is estimated. Results confirm the application of the double averaged method and existing bedform parameters for unspecific bedforms. There exists a similar trend between aspect ratio and friction factor in gravel bedforms.
Twelve predictive bedload sediment transport equations are rated against 14 sets of gravel-bed river field data collected by handheld bedload sampler in Narmab River, northeastern Iran. To evaluate these formulas two types of grain size namely bedload and bed material were used. The results show that the equations of Engelund and Hansen, Van Rijn and Einstein perform well with bed material grain size, while Shocklitsch, Meyer-Peter and Mueller, and Frijlink yield the best results using the bedload grain size.