In order to ascertain the kinetics of absorption and metabolism of transdermally administered dehydroepiandrosterone (DHEA), 10 men 29-72 years old (mean 52.4±14.5) received 50 mg DHEA/day in a gel applied onto the skin of the abdomen for 5 consecutive days. The objective was to establish the extent to which DHEA influences the levels of gonadotropins, sex hormone-binding globulin and lipids. It was found that DHEA is well absorbed and rapidly metabolized to its sulfate (DHEAS), androstenedione, and consequently to testosterone and estradiol. The DHEA levels that markedly increased after the first doses gradually declined already during the application, and this decline proceeded even after it was discontinued, reaching levels significantly lower than the original ones. On the other hand, the levels of DHEA metabolites (with the exception of DHEAS) rose during the application and reached values significantly higher than the basal ones within 5 weeks. This effect was accompanied by significantly decreased levels of LH. The serum levels of lipids, namely of cholesterol (both HDL and LDL cholesterol), triglycerides, apolipoproteins A-I and B and lipoprotein(a) after DHEA application were not changed significantly, and the atherogenic index (AI) remained unaltered. However, some correlations between hormones and lipids were found. Negative correlations concerned the following indices: DHEA/Lp(a); DHEAS/cholesterol; DHEA, DHEAS, testosterone/TG; testosterone/AI. On the other hand, LH, FSH/cholesterol, FSH, SHBG/LDL cholesterol, FSH/Apo B, Lp(a) correlated positively. It can be concluded that transdermal short-time application of DHEA results in a decrease of endogenous DHEA after finishing the treatment, with a parallel marked increase in the levels of sex hormones. Using this application protocol, exogenous DHEA neither altered the lipid spectrum, nor did it influence the atherogenic index., J. Šulcová, M. Hill, R. Hampl, Z. Mašek, A. Nováček, R. Češka, L. Stárka., and Obsahuje bibliografii
The laboratory rat, a non-photoperiodic rodent, exhibits seasonal fluctuations of melatonin. Melatonin has been found to be readily transferred from the maternal to the fetal circulation. No data exist on the possible influence of maternal pineal gland upon seasonal variations of the offspring. The aim of the present study was to asses the influence of the maternal melatonin rhythm on the offspring postnatal development of the reproductive hormones LH, FSH and prolactin. Male offspring from control, pinealectomized (PIN-X) and PIN-X + melatonin (PIN-X+MEL) mother Wistar rats were studied at 21, 31, and 60 days of age. Seasonal age-dependent variations were found for all hormones studied in control offspring but PIN-X offspring showed a tendency to have reduced duration or altered seasonal variations. Maternal melatonin treatment to PIN-X mothers partially restored the effect of pinealectomy. The chronological study of LH, FSH, and prolactin in PIN-X offspring also showed an altered pattern as compared to control-offspring. Melatonin treatment to the mothers partially restored the developmental pattern of reproductive hormones. Results of this study indicate that maternal pineal gland of the laboratory rat is involved in the seasonal postnatal development variations of reproductive hormones of the offspring., N. Vásquez, E. Díaz, C. Fernández, V. Jiménez, A. Esquifino, B. Díaz., and Obsahuje bibliografii a bibliografické odkazy
Maternal hyperandrogenism during pregnancy might have metabolic and endocrine consequences on the offspring as shown for the polycystic ovary syndrome. Despite numerous experiments, the impact of prenatal hyperandrogenic environment on postnatal sex steroid milieu is not yet clear. In this study, we investigated the effect of prenatal testosterone excess on postnatal concentrations of luteinizing hormone, corticosterone and steroid hormones including testosterone, pregnenolone, progesterone, estradiol and 7β-hydroxyepiandrosterone in the offspring of both sexes. Pregnant rats were injected daily with either testosterone propionate or vehicle from gestational day 14 until parturition. The hormones were evaluated in plasma of the adult offspring. As expected, females had lower testosterone and higher pregnenolone, progesterone and estradiol in comparison to males. In addition, corticosterone was higher in females than in males, and it was further elevated by prenatal testosterone treatment. In males, prenatal testosterone exposure resulted in higher 7β-hydroxyepiandrosterone in comparison to control group. None of the other analyzed hormones were affected by prenatal testosterone. In conclusion, our results did not show major effects on sex hormone production or luteinizing hormone release in adult rats resulting from testosterone excess during their fetal development. However, maternal hyperandrogenism seems to partially affect steroid biosynthesis in sex-specific manner., E. Domonkos, V. Borbélyová, L. Kolátorová, T. Chlupáčová, D. Ostatníková, J. Hodosy, L. Stárka, P. Celec., and Obsahuje bibliografii