Left ventricular hypertrophy (LVH) is due to pressure overload or mechanical stretch and is thought to be associated with remodeling of gap-junctions. We investigated whether the expression of connexin 43 (Cx43) is altered in humans in response to different degrees of LVH. The expression of Cx43 was analyzed by quantitative polymerase chain reaction, Western blot analysis and immunohistochemistry on left ventricular biopsies from patients undergoing aortic or mitral valve replacement. Three groups were analyzed: patients with aortic stenosis with severe LVH (n=9) versus only mild LVH (n=7), and patients with LVH caused by mitral regurgitation (n=5). Cx43 mRNA expression and protein expression were similar in the three groups studied. Furthermore, immunohistochemistry revealed no change in Cx43 distribution. We can conclude that when compared with mild LVH or with LVH due to volume overload, severe LVH due to chronic pressure overload is not accompanied by detectable changes of Cx43 expression or spatial distribution., C. Vetter ... [et al.]., and Obsahuje bibliografii a bibliografické odkazy
Direct cell-to-cell communication in the heart is maintained via gap junction channels composed of proteins termed connexins. Connexin channels ensure molecular and electrical signals propagation and hence are crucial in myocardial synchronization and heart function. Disease-induced gap junctions remodeling and/or an impairment or even block of intercellular communication due to acute pathological conditions results in derangements of myocardial conduction and synchronization. This is critical in the development of both ventricular fibrillation, which is a major cause of sudden cardiac death and persistent atrial fibrillation, most common arrhythmia in clinical practice often resulting in stroke. Many studies suggest that alterations in topology (remodeling), expression, phosphorylation and particularly function of connexin channels due to age or disease are implicated in the development of these life-threatening arrhythmias. It seems therefore challenging to examine whether compounds that could prevent or attenuate gap junctions remodeling and connex in channels dysfunction can protect the heart against arrhythmias that cause sudden death in humans. This assumption is supported by very recent findings showing that an increase of gap junctional conductance by specific peptides can prevents atrial conduction slowing or re-entrant ventricular tachycardia in ischemic heart. Suppression of ischemia-induced dephosphorylation of connexin seems to be one of the mechanisms involved. Another approach for identifying novel treatments is based on the hypothesis that even non-antiarrhythmic drugs with antiarrhythmic ability can modulate gap junctional communication and hence attenuate arrhythmogenic substrates., N. Tribulová, V. Knezl, Ľ. Okruhlicová, J. Slezák., and Obsahuje bibliografii a bibliografické odkazy