Hypertension-induced myocardial metabolic, structural and electrophysiological remodeling deteriorates with aging and contributes to both heart failure and occurrence of malignant arrhythmias. It has been shown in clinical trials that n-3 polyunsaturated fatty acids (n-3 PUFA) reduce the incidence of cardiovascular diseases and sudden cardiac death. We investigated the cardioprotective effects of n-3 PUFA in aged spontaneously hypertensive rats (SHR) and possible cellular mechanisms involved. Male and female 14-month-old SHR were fed with n-3 PUFA (Vesteralens, Norway, 20 mg/day for two months) and compared with untreated SHR. Results showed that n-3 PUFA supplementation led to 1) significant decline of blood pressure; 2) suppression of inducible ventricular fibrillation (VF) by 57 % (male) and 67 % (female) , although the arrhythmogenic substrates, like fibrosis, hypertrophy and abnormal gap junctions distribution were not eliminated; 3) preservation of the cardiomyocytes and the inte grity of their junctions; 4) enhancement of energetic metabolism enzyme activity; 5) augmentation of capillary density associated with increased alkaline phosphatase and decreased dipeptidyl peptidase-4 (DPP4) activity and 6/ increase in gap junction channel connexin-43 expression. Thus, aged male as well as female SHR benefit from n-3 PUFA supplementation that results in decrease in VF susceptibility, partly due to an improvement of myocardial metabolic state, cardiomyocyte and cell-to-cell junctions integrity and Cx43 up-regulation., M. Mitašíková, S. Šmidová, A. Mascaliová, V. Knezl, K. Dlugošová, Ľ. Okruhlicová, P. Weismann, N. Tribulová., and Obsahuje bibliografii a bibliografické odkazy
Direct cell-to-cell communication in the heart is maintained via gap junction channels composed of proteins termed connexins. Connexin channels ensure molecular and electrical signals propagation and hence are crucial in myocardial synchronization and heart function. Disease-induced gap junctions remodeling and/or an impairment or even block of intercellular communication due to acute pathological conditions results in derangements of myocardial conduction and synchronization. This is critical in the development of both ventricular fibrillation, which is a major cause of sudden cardiac death and persistent atrial fibrillation, most common arrhythmia in clinical practice often resulting in stroke. Many studies suggest that alterations in topology (remodeling), expression, phosphorylation and particularly function of connexin channels due to age or disease are implicated in the development of these life-threatening arrhythmias. It seems therefore challenging to examine whether compounds that could prevent or attenuate gap junctions remodeling and connex in channels dysfunction can protect the heart against arrhythmias that cause sudden death in humans. This assumption is supported by very recent findings showing that an increase of gap junctional conductance by specific peptides can prevents atrial conduction slowing or re-entrant ventricular tachycardia in ischemic heart. Suppression of ischemia-induced dephosphorylation of connexin seems to be one of the mechanisms involved. Another approach for identifying novel treatments is based on the hypothesis that even non-antiarrhythmic drugs with antiarrhythmic ability can modulate gap junctional communication and hence attenuate arrhythmogenic substrates., N. Tribulová, V. Knezl, Ľ. Okruhlicová, J. Slezák., and Obsahuje bibliografii a bibliografické odkazy
Thyroid hormones (TH) are powerful modulators of heart function, but their arrhythmogenic effects are less elucidated. We have examined both acute and long-term action of TH on the heart susceptibility to the ventricular fibrillation (VF) and on the heart ability to terminate VF and restore a sinus rhythm. Triiodothyronine (T3) was applied in the range of 10-9-10-6 mol/l in acute experiments using isolated perfused aged (14-month-old) guinea pig hearts. L-thyroxine (T4) was applied in the dose of 50 μg/100g/day to young (3-month-old) and aged (20-month-old) rats for 2 weeks. The T4 treatment resulted in an increased susceptibility of young, but not adult rat hearts to a hypokalemia induced VF and facilitated a spontaneous sinus rhythm (SSR) restoration in the latter group. The acute T3 administration in the range of 10-9-10-7 mol/l significantly decreased the susceptibility of an isolated heart to an electrically induced VF and also facilitated the sinus rhythm restoration. The SSR restoration was, however, not affected by 10-6 mol/l concentration of T3, which also led to an increased VF susceptibility. Results indicate that TH can affect the susceptibility of the heart to VF and its ability to restore the sinus rhythm via acute (non-genomic) and long-term (genomic) actions. Furthermore, an anti- and pro-arrhythmic potential of TH appears to be age- and dose-dependent., V. Knezl, T. Soukup, Ľ. Okruhlicová, J. Slezák, N. Tribulová., and Obsahuje bibliografii a bibliografické odkazy