A list of alien plant species recorded from Svalbard in the summer of 1988 is presented. Two localities, the Russian settlements of Barentsburg and Pyramiden on the Isfjorden, Spitsbergen, were studied. Prior to this study, almost 60 alien species were recorded from Svalbard by other investigators. During the research reported here, 44 taxa were found, 14 of which are new records for the Svalbard archipelago. Six species are considered to be possibly naturalized; however, it is difficult to assess their naturalization status because of the severity of the climate in the study area. A complete list of species is presented, with information on height and phenological stage of particular specimens. Most of the alien plants recorded at the two settlements belong to the family Brassicaceae.
Personal data of the Czech botanist Eduard Ludvík Pospíchal (13. 6. 1838, Litomyšl, eastern Bohemia – 24. 4. 1905, Belluno, N Italy), a secondary school teacher of Latin and Greek, are provided and his importance is assessed. He published floristic reports from Bohemia, Czech Republic. More importantly, he is an author of an extensive flora of the NE Adriatic coast and its surroundings.
The distribution of vascular plants in grid-cells and its relationship to the environmental correlates (driving factors) were studied using numerical methods (divisive classification and ordination). The first level of division in the classification distinguished forest and non-forest groups of grid-cells, and the second level four groups (containing predominantly species of base-rich forests at high altitudes, species of acidophilous mountain forests and small mountain grasslands, ruderal and meadows species at low altitudes, and species of thermophilous and basiphilous fringes and abandoned meadows). Within the study area, geographically consistent areas were delimited by correlating the groups, indicated by the divisive classification, with altitude and forest cover. Most differences in the Ellenberg indicator values for species in these groups for light, temperature, continentality, soil reaction and soil moisture were statistically significant. A number of variables were effective predictors (e.g. potential direct solar irradiation), physical geography (altitude, slope), land-cover (forest cover, area of urban zones) and geological bedrock were the key determinants of the species composition in the study area. However, even the most spatially correlated (according to Moran’s I measure) were the naturally contiguous variables such as topographical features (altitude, slope and aspect). Generally, the grid-cells at low altitudes contained more species due to the co-occurrence of man-made habitats with fragments of semi-natural habitats. A relatively large percentage of the variation (15.8%) was accounted for by the spatial structure of the data, the environmental factors explained 18.9%, but 65.3% of the floristic variance remained unexplained. The most spatially autocorrelated variables were also the most correlated with regard to species composition. However, the relatively high autocorrelation in the species data and their derivates had comparable or lower effect on species composition than the most autocorrelated environmental factors. The results were compared with those of other European studies, and possible bias due to the different ways of collecting and analysing data, and effect of different scales discussed.
This was the theme of the 4th International Congress on Orchid Conservation that took place in Hluboká nad Vltavou from May 2009 - June 6, 2011. Organisers noted "we are now experiencing dramatic changes in most aspects of your life. Modern technologies are being devised and deployed with increasing frequency; and although they make your lives easier, their consequences, such as air, soil and water, pollution greatly increase the pressure on your already over-stressed environment. To keep up with a rapidly growing human population, agricultural practices tend to be more and more intensive, which in turn has a negative effect on biodiversity in agricultural landscapes." and Pavel Kindlmann.
Co víme o květeně Brna? S jakými údaji můžeme pracovat a jaká je metodika sběru floristických údajů? Těmito tématy se zabývá článek shrnující dosavadní poznání květeny města Brna., What do we know about flora in the city of Brno? Which data are available and which methods were used for floristic data sampling? These are the topicscovered in the summary of recent findings on the flora in the city of Brno., and Zdeňka Lososová, Kateřina Šumberová, Lubomír Tichý, Jiří Danihelka, Marie Vymazalová.
Flóra velkých měst je ve srovnání s okolní krajinou druhově bohatá. Cílem výzkumu, který proběhl ve 32 velkoměstech střední a západní Evropy, bylo zjistit, které faktory ovlivňují výskyt rostlin ve městech a kolik druhů a které rostou v sedmi vybraných sekundárních městských biotopech. Ukázalo se, že garnitura zavlečených druhů, zejména archeofytů, je ve všech městech velmi podobná, a to bez ohledu na klimatické podmínky. Synantropizace flór tedy vede ke vzrůstající podobnosti mezi flórami měst; hlavní rozdíly ve složení jednotlivých městských květen tak způsobují ostrůvky přirozené a polopřirozené vegetace., The flora of large cities is very rich in species. During our research in 32 central and western European cities in four climatically defined zones, we aimed at the floristic inventories of 7 largely man-made habitats, such as historical squares, main boulevards, recently disturbed ruderal sites, abandoned sites with perennial vegetation, city parks, residential areas with blocks of flats or with family houses. Based on the data collected, we tried to identify factors responsible for the high species richness and taxonomic composition of city floras. Our results show that the pool of alien species is quite similar in all cities studied and that introductions of alien species reduce the differences between the floras of particular cities. Consequently, the differences are mainly due to remaining patches of natural and semi-natural habitats, which harbour indigenous species., and Zdeňka Lososová, Jiří Danihelka.
Borneo je ostrovem se zajímavou geomorfologií a překvapivě různorodou geologií. Oba faktory se spolu s historickým vývojem určujícím migrace druhů podílely na současné pestrosti bornejské flóry. Pozoruhodné funkční a taxonomické skupiny rostlin najdeme nejen v zapojeném lese, ale také nad horní hranicí lesa, v pobřežních prostředích, podél vodních toků a jinde. V krátkosti jsou představeny vybrané funční skupiny epifyty, epifyly, liány, masožravé rostliny s význačným rodem láčkovka, nezelené rostliny, rheofyty a alpinské rostliny, mezi kterými nalezneme i trávy temeprátních oblastí. Z pozoruhodných taxonomických skupin představujeme zázvory, áronovité, begonie a pěnišníky, které mají na Borneu jedno z center své diverzity., Borneo is an island with conspicuous geomorphology and variable geology. Both factors have contributed, along with historical development determining species migrations, to the present richness of the flora of Borneo. Remarkable functional and taxonomic groups of herbs occur not only in closed forests, but also above the timberline, in coastal and riparian habitats, and elsewhere. Selected functional groups are briefly introduced: epiphytes, epiphylles, rheophytes, carnivorous, achlorophyllous and alpine plants. From conspicuous taxonomic groups, we introduce gingers, aroids, begonias and rhododendrons., and Martin Dančák ... [et al.].