Xenomas caused by Microgemma vivaresi Canning, Feist, Longshaw, Okamura, Anderson, Tsuey Tse et Curry, 2005 were found in liver and skeletal muscle of sea scorpions, Taurulus bubalis (Euphrasen). All muscle xenomas examined were in an advanced stage of destruction. In developing xenomas found in liver, parasites were restricted to the centre of the cell, separated from a parasite-free zone by a nuclear network formed by branching of the host cell nucleus. Although xenomas were able to reach a size of several hundred microns, the surface remained a simple plasma membrane. Host reactions took the form of penetration by phagocytes and isolation by fibroblasts. Once the xenoma had been attacked, the nuclear profiles became pycnotic and the barrier between parasitized and parasite-free zones was lost. Parasite antigens cannot be exposed at the surface of intact xenomas, as the host does not recognise the enlarging cell as foreign. Breaches in the plasma membrane of the xenoma and leakage of parasite antigens are thought to be the stimuli for phagocyte entry into the cell, its isolation by fibroblasts and eventual granuloma formation.
Gluteal muscle contracture (GMC) is a chronic fibrotic disease of gluteal muscles due to multiple etiologies. Emilin 1 plays a determinant role in fibers formation, but its role in the progression of GMC remains unclear. The present study was aimed to search for the predictive role and regulatory mechanism of Emilin 1 on GMC. Here, Protein and mRNA expression of Emilin 1 were decreased in GMC tissues compared to normal muscle tissues. Using the analysis of target prediction, Emilin 1 was observed to be a potential downstream sponge of miR-491-5p. In comparison to Emilin 1, miR-491-5p showed an aberrant elevation in GMC tissues, which was further proven to have a negative correlation with Emilin 1. The direct binding of miR-491-5p to Emilin 1 mRNA was confirmed by luciferase reporter gene assay, and miR-491-5p mimics inhibited, while miR-491-5p inhibitor promoted the protein expression and secretion of Emilin 1 in contraction bands (CB) fibroblasts. Additionally, miR-491-5p mimics promoted the expression of cyclin-dependent kinase 2 and cyclin D1 and the proliferation of CB fibroblasts, which could be reversed by Emilin 1 overexpression. Mechanistically, miR-491-5p mimics possibly activated transforming growth factor β1 (TGF-β1)/Smad3 signal cascade via binding to 3’-untranslated region of Emilin 1 mRNA, thereby promoting the progression of fibrosis of CB fibroblasts. Collectively, miR-491-5p inhibited Emilin 1 expression, and subsequently promoted CB fibroblasts proliferation and fibrosis via activating TGF-β1/Smad3 signal axis. MiR-491-5p might be a potentially effective biomarker for predicting GMC, providing a novel therapeutic strategy for GMC.