Previously, we found that treatment of cutaneous wounds with Atropa belladonna L. (AB) revealed shortened process of acute inflammation as well as increased tensile strength and collagen deposition in healing skin wounds (Gál et al. 2009). To better understand AB effect on skin wound healing male SpragueDawley rats were submitted to one round full thickness skin wound on the back. In two experimental groups two different concentrations of AB extract were daily applied whereas the control group remained untreated. For histological evaluation samples were removed on day 21 after surgery and stained for wide spectrum cytokeratin, collagen III, fibronectin, galectin-1, and vimentin. In addition, in the in vitro study different concentration of AB extract were used to evaluate differences in HaCaT keratinocytes proliferation and differentiation by detection of Ki67 and keratin-19 expressions. Furthermore, to assess ECM formation of human dermal fibroblasts on the in vitro level fibronectin and galectin-1 were visualized. Our study showed that AB induces fibronectin and galectin-1 rich ECM formation in vitro and in vivo. In addition, the proliferation of keratinocytes was also increased. In conclusion, AB is an effective modulator of skin wound healing. Nevertheless, further research is needed to find optimal therapeutic concentration and exact underlying mechanism of action., P. Gál ... [et al.]., and Obsahuje seznam literatury
Skin healing process is postnatally always associated with scarring of various extent. Based on the clinical experience of plastic surgeons, the healing after lip cleft reconstruction is surprisingly almost scar-less when it is carried out within a few first days after birth. This phenomenon is not seen in delayed cases. In order to decipher causative mechanism, we have isolated and studied principal cell populations, keratinocytes and fibroblast, from residual tissue samples after reconstructive operation (N=39) performed at various age (0-9 years). These cells play the pivotal role in the healing and that is why we focused on description of their phenotype and also functionality with respect to age. We have identified a population of remarkably small cells in explants from newborns (day 0-10). These small cells were strongly positive for markers of low differentiated keratinocytes, keratin-8 and -19, and moreover also for vimentin. In the explants cultures from older babies this population was missing. Fibroblasts from newborns and older patients differed namely in terms of nestin expression and also in the production of extracellular matrix components. We conclude that in vitro described properties of keratinocytes and fibroblasts in newborns could participate on the almost scar-less wound healing in earliest neonatal period., E. Krejčí, O. Kodet, P. Szabo, J. Borský, K. Smetana Jr., M. Grim, B. Dvořánková., and Obsahuje bibliografii
The aim of the present experiments was to test two methods of separating myoblasts and fibroblasts (selective plating, differential trypsinization) from chick embryonal skeletal muscle and to compare their characteristics. Ornithine decarboxylase (ODC) activity, the amount of incorporated [3H]leucine into proteins and incorporation of [3H]thymidine into DNA were significantly higher in myoblasts than in fibroblasts separated by selective plating. When comparing myoblasts and fibroblasts separated by differential trypsinization, significantly higher ODC activity and greater incorporation of [3H]leucine into protein, but no incorporation of [3H]thymidine into DNA, were found in myoblasts. Higher ODC activity and greater incorporation of labelled leucine were found in fibroblasts separated by the selective plating than in fibroblasts separated by differential trypsinization. The incorporation of labelled thymidine into DNA was higher in myoblasts separated by selective plating than in myoblasts obtained by differential trypsinization. The method of selective plating appears to be simpler and adequate for obtaining myoblastic and fibroblastic cell cultures with sufficiently low mutual contamination. The method of differential trypsinization involves a more drastic treatment of cells and is more time consuming.
This study tested whether cell cycle inhibitor mitomycin C (MMC) prevents arthrogenic contracture progression during remobilization by inhibiting fibroblast proliferation and fibrosis in the joint capsule. Rat knees were immobilized in a flexed position to generate flexion contracture. After three weeks, the fixation device was removed and rat knees were allowed to freely move for one week. Immediately after and three days after fixator removal, rats received intra-articular injections of MMC or saline. The passive extension range of motion (ROM) was measured before and after myotomy of the knee flexors to distinguish myogenic and arthrogenic contractures. In addition, both cellularity and fibrosis in the posterior joint capsule were assessed histologically. Joint immobilization significantly decreased ROMs both before and after myotomy compared with untreated controls. In saline-injected knees, remobilization increased ROM before myotomy, but further decreased that after myotomy compared with that of knees immediately after three weeks of immobilization. Histological analysis revealed that hypercellularity, mainly due to fibroblast proliferation, and fibrosis characterized by increases in collagen density and joint capsule thickness occurred after remobilization in saline-injected knees. Conversely, MMC injections were able to prevent the remobilization-enhanced reduction of ROM after myotomy by inhibiting both hypercellularity and joint capsule fibrosis. Our results suggest that joint capsule fibrosis accompanied by fibroblast proliferation is a potential cause of arthrogenic contracture progression during remobilization, and that inhibiting fibroblast proliferation may constitute an effective remedy.