The term cellular immune response refers to haemocyte-mediated responses, including phagocytosis, nodulation, and encapsulation. In the present study, we identified five types of circulating haemocytes in larvae of the haemolymph of the Asian corn borer, Ostrinia furnacalis (Guenée), including granulocytes, oenocytoids, plasmatocytes, prohaemocytes, and spherulocytes. The relative number of total free haemocytes per larva decreased significantly 0.5, 24, and 36 h after the injection of Beauveria bassiana conidia. Upon conidia challenge, both phagocytosis and nodulation were observed in the collected haemolymph from O. furnacalis larvae. In addition, plasma was found to be necessary for both phagocytosis and nodulation. Therefore, we here confirm that phagocytosis and nodulation are involved in O. funacalis larvae during their fight against infection by B. bassiana, and further, that the cellular immune response of O. furnacalis helps eliminate the invading organisms despite the fact that not all the fungal conidia are killed., Dongxu Shen, Miao Li, Yuan Chu, Minglin Lang, Chunju An., and Obsahuje bibliografii
Many insects masquerade as parts of plants, such as bark or leaves, or mimic poisonous organisms in order to defend themselves against predators. However, recent studies indicate that plants may mimic insects and other arthropods to deter herbivores. Here, I report visually similar white structures of plants and arthropods in Japan and suggest they are part of a mimicry complex. Young shoots covered with white trichomes or waxy substances may mimic wax-producing insects, such as woolly aphids, coccids and caterpillars, potentially resulting in reduced herbivory. Since wax-producing insects would reduce plant quality and quantity, be distasteful and attract natural enemies, herbivorous insects and mammals may avoid such white shoots. Furthermore, fungus-infected insects, gregarious braconid cocoons, spider egg sacs and froth made by froghopper nymphs or blasticotomid sawfly larvae are also conspicuously white and impose risks for herbivorous insects. Thus, these white structures may be mimicry models for white shoots and are likely to be part of a defensive mimicry complex. Although this study focuses on defence against herbivores, there are simultaneous physiological roles for white colouration that will not be discussed in depth here., Kazuo Yamazaki., and Obsahuje bibliografii