Neuroimaging methods have been used to study differences of brain function between males and females. Differences in working memory have been also investigated, but results of such studies are mixed with respect to behavioral data, reaction times and activated brain areas. We tried to analyze functional MRI data acquired during the working memory task and search for differences of brain activation between genders. 20 healthy righthanded volunteers (10 males and 10 females) participated in the study. All of them were university students or fresh graduates. Subjects underwent block designed verbal working memory task (Item Recognition Task) inside the MRI scanner. Standard singlesubject pre-processing and group fMRI analyses were performed using the FEAT software from FSL library. In the behavioral data, there was no statistically significant difference in the number of correct responses during the task. The task activated similar bilateral regions of frontal, parietal, temporal and occipital lobes, basal ganglia, the brainstem and in the cerebellum, which corresponds to the previous verbal working memory neuroimaging research. In direct comparison, there was no statistically significant difference in brain activation between small samples of male and female young healthy volunteers., Z. Tüdös, P. Hok, P. Hluštík, A. Grambal., and Obsahuje bibliografii
The paper examines sources of brain activity, contributing to EEG patterns which correspond to motor imagery during training to control brain-computer interface. To identify individual source contribution into electroencephalogram recorded during the training Independent Component Analysis was used. Then those independent components for which the BCI system classification accuracy was at maximum were treated as relevant to performing the motor imagery tasks, since they demonstrated well exposed event related de-synchronization and event related synchronization of the sensorimotor μ-rhythm during imagining of contra- and ipsilateral hand movements. To reveal neurophysiological nature of these components we have solved the inverse EEG problem to locate the sources of brain activity causing these components to appear in EEG. The sources were located in hand representation areas of the primary sensorimotor cortex. Their positions practically coincide with the regions of brain activity during the motor imagination obtained in fMRI study. Individual geometry of brain and its covers provided by anatomical MR images was taken into account when localizing the sources.
We investigated the role of serotonin in cognitive activation of the frontal cortex. The serotonergic system was affected by the administration of an amino acids mixture without tryptophan (tryptophan depletion). In a placebo-controlled double-blind cross-over study with 20 healthy volunteers, we tested the hypothesis that a tryptophan (serotonin)
decrease affects the activation of prefrontal cortex by the Stroop test. Cognitive brain activation was evaluated by functional magnetic resonance imaging (fMRI). Tryptophan depletion decreased the plasma tryptophan level up to 90 % for five hours after the tryptophan-free drink had been consumed when compared with the same mixture with tryptophan (p ≤
0.0001). Tryptophan depletion did not affect the Stroop test performance. We compared fMRI activation in both conditions (tryptophan depletion and placebo) with plasma tryptophan levels as the covariates. The tryptophan
depletion increased the activation (fMRI signal) in the bilateral mediofrontal cortex, anterior cingulate and left dorsolateral prefrontal cortex. The present findings allow the postulate that serotonergic medial forebrain and cingulum bundle pathways play a role in the activity of cortical structures involved in Stroop test processing.