Cardiovascular disease (CVD) and depressive disorders (DD) are two of the most prevalent health problems in the world. Although CVD and depression have different origin, they share some common pathophysiological characteristics and risk factors, such as the increased production of proinflammatory cytokines, endothelial dysfunction, blood flow abnormalities, decreased glucose metabolism, elevated plasma homocysteine levels, oxidative stress and disorder in vitamin D metabolism. Current findings confirm the common underlying factors for both pathologies, which are related to dramatic dietary changes in the mid-19th century. By changing dietary ratio of omega-6 to omega-3 fatty acids from 1:1 to 15-20:1 some changes in metabolism were induced, such as increased pro-inflammatory mediators and m odulations of different signaling pathways following pathophysiological response related to both, cardiovascular diseases and depressive disorders., J. Trebatická, A. Dukát, Z. Ďuračková, J. Muchová., and Obsahuje bibliografii
The fads2 gene encoding Δ6-desaturase, the rate-limiting enzyme of the LCPUFA biosynthesis is expressed in astrocytes. Dietary fatty acids, which cross the blood-brain barrier, may regulate the transcription of lipogenic enzymes through activation of transcription factors such as peroxisome proliferator-activated receptors (PPARs). The PPARs form the transcription complex with retinoid X receptors (RXRs) that are activated by 9-cis retinoic acid, a metabolite of vitamin A (VA). The study examines whether challenge of astrocytes with VA, prior 24-h treatment with palmitic acid (PA), α-linolenic acid (ALA) or docosahexaenoic acid (DHA) has the effect on the FADS2 expression. RT-qPCR showed that in astrocytes not challenged with VA, PA increased fads2 gene expression and DHA decreased it. However, in VA-primed astrocytes, PA doubled the FADS2 mRNA levels, while DHA increased fads2 gene expression, oppositely to non-primed cells. Furthermore, similar changes were seen in VA-primed astrocytes with regard to Δ6-desaturase protein levels following PA and DHA treatment. ALA did not have any effect on the FADS2 mRNA and protein levels in either VA-primed or non-primed astrocytes. These findings indicate that in the presence of vitamin A, DHA upregulates fads2 gene expression in astrocytes., B. Dziedzic, D. Bewicz-Binkowska, E. Zgorzynska, D. Stulczewski, L. Wieteska, B. Kaza, A.Walczewska., and Obsahuje bibliografii