The study aimed to evaluate if the monitoring of advanced glycation end products (AGEs), advanced oxidation protein products (AOPP), lipoperoxides (LPO) and interleukin-6 (IL-6) in plasma could help to predict development of diabetic complications (DC). Clinical and biochemical parameters including AGEs, AOPP, LPO and IL-6 were investigated in patients with type 2 diabetes mellitus (DM2) with (+DC) and without (-DC) complications. AGEs were significantly higher in both diabetic groups compared to controls. AGEs were also significantly higher in group +DC compared to -DC. AGEs significantly correlated with HbA1c. We observed significantly higher AOPP in both diabetic groups in comparison with controls, but the difference between -DC and +DC was not significant. LPO significantly correlated with BMI. IL-6 were significantly increased in both diabetic groups compared to controls, but the difference between -DC and +DC was not significant. There was no significant correlation between IL-6 and clinical and biochemical parameters. These results do not exclude the association between IL-6 and onset of DC. We suggest that the measurement of not only HbA1c, but also AGEs may be useful to predict the risk of DC development in clinical practice. Furthermore, the measurement of IL-6 should be studied as adjunct to HbA1c monitoring., V. Jakuš, E. Šándorová, J. Kalninová, B. Krahulec., and Obsahuje bibliografii
Monoamine oxidase (MAO, type A and B) and semicarbazide-sensitive amine oxidase (SSAO) metabolize biogenic amines, however, the impact of these enzymes in arteries from patients with type 2 diabetes remains poorly understood. We investigated the kinetic parameters of the enzymes to establish putative correlations with noradrenaline (NA) content and patient age in human mesenteric arteries from type 2 diabetic patients. The kinetic parameters were evaluated by radiochemical assay and NA content by high-performance liquid chromatography (HPLC). The activity of MAO-A and SSAO in type 2 diabetic vascular tissues was significantly lower compared to the activity obtained in non-diabetic tissues. In the correlation between MAO-A (Km) and NA content, we found a positive correlation for both the diabetic and non-diabetic group, but no correlation was established for patient age. In both groups, MAO-B (Vmax) showed a negative correlation with age. The results show that MAO-A and SSAO activities and NA content of type 2 diabetic tissues are lower compared to the non-diabetic tissues, while MAO-B activity remained unchanged. These remarks suggest that MAO-A and SSAO may play an import ant role in vascular tissue as well as in the vascular pathophysiology of type 2 diabetes., S. F. Nunes ... [et al.]., and Obsahuje bibliografii a bibliografické odkazy
Pluripotent pancreatic stellate cells (PSCs) receive growing interest in past decades. Two types of PSCs are recognized – vitamin A accumulating quiescent PSCs and activated PSCs- the main producents of extracellular matrix in pancreatic tissue. PSCs plays important role in pathogenesis of pancreatic fibrosis in pancreatic cancer and chronic pancreatitis. PSCs are intensively studied as potential therapeutical target because of their important role in developing desmoplastic stroma in pancreatic cancer. There also exists evidence that PSC are involved in other pathologies like type-2 diabetes mellitus. This article brings brief characteristics of PSCs and recent advances in research of these cells.
Acute streptozotocin diabetes mellitus (DM) as well as remote ischemic preconditioning (RPC) has shown a favorable effect on the postischemic-reperfusion function of the myocardium. Cardioprotective mechanisms offered by these experimental models involve the mitochondria with the changes in functional properties of membrane as the end-effector. The aim was to find out whether separate effects of RPC and DM would stimulate the mechanisms of cardioprotection to a maximal level or whether RPC and DM conditions would cooperate in stimulation of cardioprotection. Experiments were performed on male Wistar rats divided into groups: control, DM, RPC and DM treated by RPC (RPC+DM). RPC protocol of 3 cycles of 5-min hind limb ischemia followed by 5-min reperfusion was used. Ischemicreperfusion injury was induced by 30-min ischemia followed by 40-min reperfusion of the hearts in Langendorff mode. Mitochondria were isolated by differential centrifugation, infarct size assessed by staining with 1 % 2,3,5-triphenyltetrazolium chloride, mitochondrial membrane fluidity with a fluorescent probe DPH, CoQ9 and CoQ10 with HPLC. Results revealed that RPC as well as DM decreased the infarct size and preserved mitochondrial function by increasing the mitochondrial membrane fluidity. Both used models separately offered a sufficient protection against ischemic-reperfusion injury without an additive effect of their combination., M. Ferko, I. Kancirová, M. Jašová, I. Waczulíková, S. Čarnická, J. Kucharská, O. Uličná, O. Vančová, M. Muráriková, T. Ravingerová, A. Ziegelhöffer., and Obsahuje bibliografii
Diabetes mellitus is relatively frequently associated with fatty liver disease. Increased oxidative stress probably plays an important role in the development of this hepatopathy. One of possible sources of reactive oxygen species in liver is peroxisomal system. There are several reports about changes of peroxisomal enzymes in experimental diabetes, mainly enzymes of fatty acid oxidation. The aim of our study was to investigate the possible changes of activities of liver peroxisomal enzymes, other than enzymes of beta-oxidation, in experimental diabetes mellitus type 2. Biochemical changes in liver of experimental animals suggest the presence of liver steatosis. The changes of serum parameters in experimental group are similar to changes in serum of patients with non-alcoholic fatty liver disease. We have shown that diabetes mellitus influenced peroxisomal enzymes by the different way. Despite of well-known induction of peroxisomal beta-oxidation, the activities of catalase, aminoacid oxidase and NADH-cytochrome b5 reductase were not significantly changed and the activities of glycolate oxidase and NADP-isocitrate dehydrogenase were significantly decreased. The effect of diabetes on liver peroxisomes is probably due to the increased supply of fatty acids to liver in diabetic state and also due to increased oxidative stress. The changes of metabolic activity of peroxisomal compartment may participate on the development of diabetic hepatopathy., L. Turecký, V. Kupčová, E. Uhlíková, V. Mojto., and Obsahuje bibliografii
The mesenteric and intestinal blood flow is organized and regulated to support normal intestinal function, and the regulation of blood flow is, in part, determined by intestinal function itself. In the process of the development and adaptation of the intestinal mucosa for the support of the digestive processes and host defense mechanisms, and the muscle layers for propulsion of foodstuffs, a specialized microvascular architecture has evolved in each tissue layer. Compromised mesenteric and intestinal blood flow, which can be common in the elderly, may lead to devastating clinical consequences. This problem, which can be caused by vasospasm at the microvascular level, can cause intestinal ischaemia to any of the layers of the intestinal wall, and can initiate pathological events which promote significant clinical consequences such as diarrhea, abdominal angina and intestinal infarction. The objective of this review is to provide the reader with some general concepts of the mechanisms by which neurohumoral vasoactive substances influence mesenteric and intestinal arterial blood flow in health and disease with focus on transmural transport processes (absorption and secretion). The complex regulatory mechanisms of extrinsic (sympathetic-parasympathetic and endocrine) and intrinsic (enteric nervous system and humoral- endocrine) components are presented. More extensive reviews of platelet function, atherosclerosis, hypertension, diabetes mellitus, the carcinoid syndrome, 5-hydroxytryptamine and nitric oxide regulation of vascular tone are presented in this context. The possible options of pharmacological intervention (e.g. vasodilator agonists and vasoconstrictor antagonists) used for the treatment of abnormal mesenteric and intestinal vascular states are also discussed.