Globidia, at various stages of differentiation were found in histological sections prepared from the digestive tract of an Australian gecko Heteronotia binoei Gray, 1845. the globidia — seemingly in hypertrophic endothelial host cells - were located in the lamina propria of the small intestine, and were enclosed in a parasitophorous vacuole with various stages of differentiating ineronts. When fully matured, globidia contained hundreds of merozoites within their parasitophorous vacuole.
The mesenteric and intestinal blood flow is organized and regulated to support normal intestinal function, and the regulation of blood flow is, in part, determined by intestinal function itself. In the process of the development and adaptation of the intestinal mucosa for the support of the digestive processes and host defense mechanisms, and the muscle layers for propulsion of foodstuffs, a specialized microvascular architecture has evolved in each tissue layer. Compromised mesenteric and intestinal blood flow, which can be common in the elderly, may lead to devastating clinical consequences. This problem, which can be caused by vasospasm at the microvascular level, can cause intestinal ischaemia to any of the layers of the intestinal wall, and can initiate pathological events which promote significant clinical consequences such as diarrhea, abdominal angina and intestinal infarction. The objective of this review is to provide the reader with some general concepts of the mechanisms by which neurohumoral vasoactive substances influence mesenteric and intestinal arterial blood flow in health and disease with focus on transmural transport processes (absorption and secretion). The complex regulatory mechanisms of extrinsic (sympathetic-parasympathetic and endocrine) and intrinsic (enteric nervous system and humoral- endocrine) components are presented. More extensive reviews of platelet function, atherosclerosis, hypertension, diabetes mellitus, the carcinoid syndrome, 5-hydroxytryptamine and nitric oxide regulation of vascular tone are presented in this context. The possible options of pharmacological intervention (e.g. vasodilator agonists and vasoconstrictor antagonists) used for the treatment of abnormal mesenteric and intestinal vascular states are also discussed.
Glucagon-like-peptide 2 (GLP-2) is an endogenous enteroendocrine physiological trophic peptide. Glepaglutide is a novel long-acting GLP-2 analog under development for the treatment of patients with Short Bowel Syndrome (SBS). The objective of this work was to compare the small intestinal trophic effects in both genders following short (1 week) versus long-term (26-39 weeks) GLP-2 treatment in Wistar rats and Beagle dogs. Following both short- and long-term treatment with glepaglutide, a significant dose-dependent intestinotrophic effect was seen in both genders and species. At all doses increased length and weight of the small intestine as well as macroscopic thickening and villous hypertrophy were noted in all segments of the small intestine, without any differences between genders. The findings were still present following a 6-week recovery period, indicating long-acting intestinotrophic effects of glepaglutide. These studies demonstrate that a long-acting GLP-2 analog (glepaglutide) has a fast onset and long duration of intestinotrophic action with similar profile in both genders and species (rat and dog).