The receptor for photoperiodism in nymphs of Poecilocoris lewisi was examined using a phosphorescent paint, which absorbs light energy and emits phosphorescence in the dark. This species shows a facultative diapause in the fifth (final) nymphal instar and its induction is primarily controlled by photoperiod in the fourth instar. The incidence of diapause in the fifth instar was determined after exposing selected regions of the body surface to a longer photophase than the rest by applying a phosphorescent paint in the fourth instar. The incidence of diapause was significantly lower in insects with their compound eyes painted than in control insects at near-critical daylengths. However, painting the central part of the head had no effect. It is concluded, therefore, that the compound eyes are the principal receptor for photoperiodism in nymphs of P. lewisi. This is the first report implicating the compound eyes in the reception of photoperiod in nymphal insects.
In the highly sexual-dimorphic nocturnal moth, Acentria ephemerella Denis & Schiffermüller 1775, the aquatic and wingless female possesses a refracting superposition eye, whose gross structural organization agrees with that of the fully-winged male. The possession of an extensive corneal nipple array, a wide clear-zone in combination with a voluminous rhabdom and a reflecting tracheal sheath are proof that the eyes of both sexes are adapted to function in a dimly lit environment. However, the ommatidium of the male eye has statistically significantly longer dioptric structures (i.e., crystalline cones) and light-perceiving elements (i.e., rhabdoms), as well as a much wider clear-zone than the female. Photomechanical changes upon light/dark adaptation in both male and female eyes result in screening pigment translocations that reduce or dilate ommatidial apertures, but because of the larger number of smaller facets of the male eye in combination with the structural differences of dioptric apparatus and retina (see above) the male eye would enjoy superior absolute visual sensitivity under dim conditions and a greater resolving power and ability to detect movement during the day. The arrangement of the microvilli in the rhabdom of both genders suggests that their eyes are polarization-sensitive, an ability they would share with many aquatic insects that have to recognize water surfaces. Although sexual recognition in A. ephemerella is thought to chiefly rely on pheromones, vision must still be important for both sexes, even if the females are wingless and never leave their watery habitat. Females swim actively under water and like their male counterparts, which fly above the surface of the water, they would have to see and avoid obstacles as well as potential predators. This, together with a small incidence of winged females, we believe, could be the reason why the eyes of female A. ephemerella are less regressed than those of other sexually dimorphic moths, like for instance Orgyia antiqua. Another, but difficult to test, possibility is that male and female A. ephemerella have diverged in their behaviour and habitat preferences less long ago than other sexually dimorphic moths.
We studied visual orientation and perching behaviour of a territorial libellulid dragonfly species, Libellula quadrimaculata. The studies were performed during sunny, cloudless conditions at a pond in southern Styria, Austria, from May to July of 2001 and 2002. Individual males were observed for periods of 3 to 4 weeks.
We measured dragonfly's horizontal orientation relative to the solar azimuth, and vertical orientation relative to the solar altitude. The measurements indicated that the males had a favourable view of the sky during perching. In addition, the relative amounts of ultraviolet (UV) and blue-violet radiation in scattered light (not direct sunlight) were calculated for the whole sky and for the section of the sky viewed by the fovea. Our results show that the dorsal fovea is directed preferentially toward a section of the sky away from the sun, with less radiation but a higher UV and blue-violet saturation.
The present findings fit in well with the hypothesis, based on optical and physiological data, that the fovea, which is sensitive only to blue and UV radiation, is optimally suited to the detection of small, rapidly flying insects against the blue sky. The findings supply the first behavioural correlates of this foveal specialisation.
The aim of this review is to explain the functional significance of mantis peering behaviour from an entomological perspective. First the morphological and optical features of the mantis compound eye that are important for spatial vision are described. The possibility that praying-mantises use binocular retinal disparity (stereopsis) and other alternative visual cues for determining distance in prey capture, are discussed. The primary focus of the review is the importance of peering movements for estimating the distance to stationary objects. Here the following aspects are examined: (1) Direct evidence via object manipulation experiments of absolute distance estimation with the aid of self-induced retinal image motion; (2) the mechanism of absolute distance estimation (with the interaction of visual and proprioceptive information); (3) the range of absolute and relative distance estimation; (4) the influence of target object features on distance estimation; and (5) the relationship between peering behaviour and habitat structures, based on results of studies on three species of mantis., Karl Kral., and Obsahuje seznam literatury