Cardiovascular prosthetic bypass grafts do not endothelialize spontaneously in humans, and so they pose a thrombotic risk. Seeding with cells improves thei r performance, particularly in small-caliber applications. Knitted tubular polyethylene- terephthalate (PET) vascular pros theses (6 mm) with commercial type I collagen (PET/Co) were modified in the lumen by the adsorption of laminin (LM), by coating with a fibrin network (Fb) or a combination of Fb and fibronectin (Fb/FN). Primary human saphenous vein endothelial cells were seeded (1.50 × 10 5 /cm 2 ), cultured for 72 h and exposed to laminar shear stress 15 dyn/cm 2 for 40 and 120 min. The control static grafts were excluded from shearing. The cell adherence after 4 h on PET/Co, PET/Co +LM, PET/Co +Fb and PET/Co +Fb/ FN was 22 %, 30 %, 19 % and 27 % of seeding, respectively. Comp ared to the static grafts, the cell density on PET/Co and PET/Co +LM dropped to 61 % and 50 %, respectively, after 120 min of flow. The cells on PET/Co +Fb and PET/Co +Fb/FN did not show any detachment during 2 h of shear stress. Pre-coating the clinically-used PET/Co vascular prosthesis with LM or Fb/FN adhesive protein assemblies promotes the adherence of endothelium. Cell retention under flow is improved particularly on fibrin-containing (Fb and Fb/FN) surfaces., J. Chlupáč ... [et al.]., and Obsahuje bibliografii a bibliografické odkazy
Induction of the inducible form of nitric oxide synthase (iNOS) in the vascular and cardiac tissue by several inflammatory stimuli may result in the production of large amounts of nitric oxide (NO) for a sustained period. Recent data obtained in the rat aorta in which iNOS was induced by lipopolysaccharide (LPS) have demonstrated that adventitial cells represent the main site of NO production. Adventitial-derived NO can exert an immediate down-regulatory effect on smooth muscle contraction (via activation of the cyclic GMP pathway) but may also initiate longer lasting effects through the formation of NO stores within the medial layer. One candidate for such NO stores are dinitrosyl non-heme iron complexes. Low molecular weight thiols interact with preformed NO stores and promote vasorelaxation by a cyclic GMP-independent mechanism involving the activation of potassium channels. In the heart, the induction of iNOS is involved in delayed protection against ischemia-reperfusion-induced functional damages. Recent data obtained with monophosphoryl lipid A, a non-toxin derivative of LPS, strongly suggest that iNOS-derived NO in the rat heart does not act as an immediate mediator of the cardioprotection but rather as a trigger of long-term protective mechanisms. Thus, the present data reveal the important role of adventitial cells as a site of iNOS expression and activity in intact blood vessels. The induction of adaptive mechanisms in the heart and the formation of releasable NO stores in blood vessels are examples of long-term consequences of iNOS induction. These new information are relevant for a better understanding of the circumstances in which NO overproduction by iNOS may play either a beneficial or deleterious role in these tissues., B. Muller, A. L. Kleschyov, K. Gyorgy, J.-C. Stoclet., and Obsahuje bibliografii