Asthma is a complex disease with a variable course. Efforts to
identify biomarkers to predict asthma severity, the course of
disease and response to treatment have not been very successful
so far. Biomarker research has expanded greatly with the
advancement of molecular research techniques. An ideal
biomarker should be suitable to identify the disease as well the
specific endotype/phenotype, useful in the monitoring of the
disease and to determine the prognosis, easily to obtain with
minimum discomfort or risk to the patient. An ideal biomarker
should be suitable to identify the disease as well the specific
endotype/phenotype, useful in the monitoring of the disease and
to determine the prognosis, easily to obtain with minimum
discomfort or risk to the patient - exhaled breath analysis, blood
cells and serum biomarkers, sputum cells and mediators and urine
metabolites could be potential biomarkers of asthma bronchiale.
Unfortunately, at the moment, an ideal biomarker doesn’t exist and
the overlap between the biomarkers is a reality. Using panels of
biomarkers could improve probably the identification of asthma
endotypes in the era of precision medicine.
Human body reacts to physical, chemical and biological insults with a complex inflammatory reaction. Crucial components and executors of this response are endothelial cells, platelets, white blood cells, plasmatic coagulation system, and complement. Endothelial injury and inflammation are associated with elevated blood levels of cell membrane-derived microvesicles. Increased concentrations of microvesicles were found in several inflammatory reactions and diseases including acute coronary syndromes, stroke, vasculitis, venous thromboembolism, multiple sclerosis, rheumatoid arthritis, systemic lupus ery-thematosus, anti-phospholipid antibody syndrome, inflammatory bowel disease, thrombotic thrombocy-topenic purpura, viral myocarditis, sepsis, dissemi-nated intravascular coagulation, polytrauma, and burns. Microvesicles can modulate a variety of cellular processes, thereby having an impact on pathogenesis of diseases associated with inflammation. Microvesicles are important mediators and potential biomarkers of systemic inflammation. Measurement of inflammatory cell-derived microvesicles may be utilized in diagnostic algorithms and used for detection and determination of severity in diseases associated with inflammatory responses, as well as for prediction of their outcome. This review focuses on the mechanisms of release of microvesicles in diseases associated with systemic inflammation and their potential role in the regulation of cellular and humoral interactions. and Corresponding author: Jan Janota
The interval model training has been more recommended to promote aerobic adaptations due to recovery period that enables the execution of elevated intensity and as consequence, higher workload in relation to continuous training. However, the physiological and aerobic capacity adaptations in interval training with identical workload to continuous are still uncertain. The purpose was to characterize the effects of chronic and acute biomarkers adaptations and aerobic capacity in interval and continuous protocols with equivalent load. Fifty Wistar rats were divided in three groups: Continuous training (GTC), interval training (GTI) and control (CG). The running training lasted 8 weeks (wk) and was based at Anaerobic Threshold (AT) velocity. GTI showed glycogen super-compensation (mg/100 mg) 48 h after training session in relation to CG and GTC (GTI red gastrocnemius (RG)=1.41±0.16; GTI white gastrocnemius (WG)=1.78±0.20; GTI soleus (S)=0.26±0.01; GTI liver (L)=2.72±0.36; GTC RG=0.42±0.17; GTC WG=0.54±0.22; GTC S=0.100±0.01; GTC L=1.12±0.24; CG RG=0.32±0.05; CG WG=0.65±0.17; CG S=0.14±0.01; CG L=2.28±0.33). The volume performed by GTI was higher than GTC. The aerobic capacity reduced 11 % after experimental period in GTC when compared to GTI, but this change was insignificant (19.6±5.4 m/min; 17.7±2.5 m/min, effect size = 0.59). Free fatty acids and glucose concentration did not show statistical differences among the groups. Corticosterone concentration increased in acute condition for GTI and GTC. Testosterone concentration reduced 71 % in GTC immediately after the exercise in comparison to CG. The GTI allowed positive adaptations when compared to GTC in relation to: glycogen super-compensation, training volume performed and anabolic condition. However, the GTI not improved the aerobic performance., G. G. de Araujo, C. A: Gobatto, M. Marcos-Pereira, I. G. M. Dos Reis, R: Verlengia., and Obsahuje bibliografii
In 1984, we started using therapeutic plasmapheresis (plasma exchange) as a method of extracorporeal lipoprotein elimination for the treatment of hyperchole sterol emic patients. We evaluated the results of long-term therapy in 14 patients, 8 men and 6 women. The average age was 55.6 ±13.2 (range 28-70), median 59.5 years. 14 patients were diagnosed with familial hypercholesterol emia (FH): 5 homozygous, 9 hetero zygous. Ten patients in the group were treated using immunoadsorption lipoprotein apheresis and 4 using h emorheopheresis. Immunoapheretic interventions decreased LDL-cholesterol (82 ±1 %), ApoB (73 ±13 %) and even Lp(a) by 82 ±19 %, respectively. Selected non-invasive methods are important for long -term and repeated follow -up. Carotid intima-media thickness showed improvement or stagnation in 75 % of the patients. Biomarkers of endothelial dysfunction such as endoglin (in the control group: 3.85 ±1.25 μ g/l, in lipoprotein apheresis-treated hypercholesterol emic individuals 5.74 ±1.47 μ g/l), CD40 ligand (before lipoprotein apheresis: 6498 ±2529 ng/l, after lipoprotein apheresis: 4057 ±2560 ng/l) and neopterin (before lipoprotein apheresis: 5.7 ±1.1 nmol/l, afte r lipoprotein apheresis: 5.5 ±1.3 nmol/l) related to the course of atherosclerosis, but did not reflect the actual activity of the disease nor facilitate the prediction or planning of therapy. Hemorheopheresis may improve blood flow in microcirculation in familial hypercholesterolemia and also in some other microcirculation disorders via significantly decreased activity of thrombomodulin (p<0.0001), tissue factor (p<0.0001), aggregation of thrombocytes (p<0.0001) and plasma and whole blood viscosity (p<0.0001). In conclusion, lipoprotein apheresis and hemorheopheresis substantially lowered LDL-cholesterol in severe hypercholesterolemia. Our experience with long-term therapy also shows good tolerance and a small number of complications (6,26% non-serious clinical compl.), V. Bláha, M. Bláha, M. Lánská, D. Solichová, L. Kujovská Krčmová, E. Havel, P. Vyroubal, Z. Zadák, P. Žák, L. Sobotka., and Obsahuje bibliografii