Semi-natural habitats are key components of rural landscapes because they shelter a significant number of overwintering arthropods that are beneficial to agriculture. However, woodlots are semi-natural habitats with high patch-level heterogeneity and this aspect has been poorly studied. The purpose of this study was to determine the influence of woodlot heterogeneity on overwintering ground beetles. Woodlot heterogeneity was characterized in terms of distance from the woodlot boundary and date of the most recent logging operation. We used emergence traps to quantify the population density of ground beetles that overwintered in the different parts of the woodlot. In woodlot edges the densities and species richness of ground beetles were significantly higher than in the rest of the woodlot. Ground beetles that are active in crop fields overwintered in the edges but not in the inner zone of the woodlot. Species assemblages of ground beetles overwintering in the edges were highly diverse. The date of the most recent logging operation did not explain the distribution of ground beetles that overwintered in the woodlot. Our results show that woodlots, and in particular their edges, are used as a winter shelter by ground beetles that spend part of their life in crops, which potentially favours biological control in adjacent crop fields. and Anthony Roume, Annie Ouin, Laurent Raison, Marc Deconchat.
Circadian rhythms play an essential role in the adaptation of organisms to the environment and may show species-specific or sex-specific differences even within a closely related taxonomic group. Although spiders (Araneae) are sexually dimorphic in several morphological and behavioural features, there are very few studies on the sex-specific differences in their biological rhythms. This study evaluated the circadian rhythm in the locomotor activity of two agrobiont hunting species of spider, Carrhotus xanthogramma (Latreille, 1819) (Salticidae) and Philodromus cespitum (Walckenaer, 1802) (Philodromidae), under natural photoperiod conditions. Particular attention was paid to possible differences between the sexes in both species. We found that C. xanthogramma is a strictly diurnal species with a mean activity peak in the morning in both sexes and the females are more active than males. The locomotor activity rhythm of males was richer in ultradian (shorter than a day but longer than an hour) components, although the relative power of these components was negligible compared to the main, 24-h period component. In accordance with these results, the diel pattern of locomotor activity of C. xanthogramma can be described by a unimodal cosine curve. In contrast to C. xanthogramma, both sexes of Ph. cespitum showed cathemeral activity (i.e., activity occur within both the light and dark portions of the daily cycle) and females and males follow quite different activity schedules: females were most active at night, shortly before nautical dawn, whereas males were most active early in the morning. Unlike C. xanthogramma, Ph. cespitum has more ultradian components, with higher relative power especially in females, where besides the 24-h circadian component there is a particularly strong 12-h ultradian period. Based on these factors, females of Ph. cespitum show a bimodal and males a unimodal pattern.