If the Shields number of a flow above an erodible bed is higher than one, then the current exerts so high shear stress at the top of a granular bed that the upper part of the bed is eroded and the top of the non-eroded rest of the bed is flat (no bed forms occur). This flow regime is typical for flows over a stationary bed in pipes but it can occur also in open-channel flows, particularly under flood conditions when both the depth and velocity of the flow are high. The current picks up particles from the eroded part of the bed and transports them within the flow. The total load of transported particles is composed of particles transported either as the contact load or as the suspended load, depending on the dispersive mechanism that keeps the particles inside the flow. Solids distribution (i.e. the shape of the concentration profile) of the transported particles across the flow helps to identify an acting dispersive mechanism and hence a mechanism through which the transported particles contribute to flow friction. The paper analyzes the concentration-profile measurements in a medium-sand-slurry current above an erodible stationary bed in a 150-mm pipe. The experiments revealed interesting effects of high shear stress on the shapes of concentration profiles across the flow above the bed. The analysis suggests that carrier turbulence is a prevailing dispersion mechanism within the upper part of the discharge area above the bed for flow conditions characterized by values of the ratio u*b/vt higher than say 4.5. It seems that the shearing action as an exclusive particle dispersion mechanism is confined to the region not far above the top of the bed. Apparently, the high shear stress at the top of the stationary bed is capable of producing turbulent suspension that transports a considerable amount of medium-sand particles (average delivered volumetric concentrations of transported particles up to 0.26) through the 150-mm pipe. and Při proudění vody nad pohyblivým dnem za podmínek vysokého smykového napětí na povrchu dna (Shieldsovo číslo větší než 1) je horní vrstva dna erodována proudem vody a na povrchu neerodované části dna nevznikají dnové útvary. Takové proudění se vyskytuje například v potrubí dopravujícím směs nad sedlinou na dně potrubí, ale může se vyskytnout i v otevřeném korytě, zvláště za povodňové situace, kdy jsou pro proudění typické velká rychlost a velká hloubka vody. Proud unáší částice z erodované vrstvy dna. Mechanismy, které mohou udržovat částice v proudu, jsou v principu dva: turbulentní suspenze a mezičásticový kontakt. Každý z těchto mechanismů způsobuje jiné rozdělení částic, tj. jiný koncentrační profil, po svislici proudu. Měřením koncentračních profilů by tedy mělo být možné odhadnout, jaký mechanismus převažuje v proudění za určitých sledovaných podmínek. Příspěvek analyzuje koncentrační profily měřené v potrubí průměru 150 mm při proudění vodní směsi střednězrnného písku nad pískovou sedlinou. Analýza výsledků měření ukázala, že turbulence v proudu vody je převažujícím mechanismem podpory částic přinejmenším v horní polovině výšky průtočné části potrubí při podmínkách charakterizovaných hodnotou poměru třecí rychlosti ve dně a usazovací rychlosti unášené částice (u*b/vt) větší než přibližně 4,5. Na rozdíl od dřívějších závěrů v literatuře se zdá, že mezičásticové kolize se jako výhradní mechanismus disperze částic uplatňují jen v poměrně omezené oblasti proudu nad povrchem dna. Vysoké smykové napětí ve dně tak přispívá nejen ke vzniku mezičásticových kolizí, ale i k turbulentní podpoře částic. Turbulentní podpora umožňuje dosažení vysokých hodnot (až do 0,26) dopravní koncentrace částic střednězrnného písku ve směsi proudící potrubím průměru 150 mm.
This paper investigates the incipient motion of sediment particles under non-uniform flow in river and laboratory. In rivers, the non-uniform flow is often observed due to the presence of various bed forms. Threshold condition has been examined by using the Shields diagram based on the uniform flow assumption, however, this approach can be led to fallacious results for non-uniform flows where the effect of pressure gradient is significant due to bed forms. This study investigates the chronological order of incipient motion of the particles, the average threshold velocity (Ucr), and Shields parameter for non-uniform flows. River data collection with gravel is used for investigating the incipient motion of surface layer of river bed and the laboratory data collection is considered studying the incipient motion of sub-surface layer of river. Both river and laboratory data collections are conducted in the presence of bed forms. Results reveal that the Shields diagram underestimates the particle incipient motion under accelerating and decelerating flows for the both case of laboratory and river. In both weak and general motion in the laboratory, the values of the critical Shields parameter are located below the Shields diagram, showing no particle motion. Our analysis shows that the incipient motion in river is affected by the presence of bed forms, river width changes, and flow non-uniformity conditions. The results show that in the accelerating flow (the bed form exit with a negative slope), the incipient motion is greater than the decelerating flow (the bed form entrance with a positive slope).
Two sets of triangular hydrographs were generated in a 12-m-long laboratory flume for two sets of initial bed conditions: intact and water-worked gravel bed. Flowrate ranging from 0.0013 m3 s–1 to 0.0456 m3 s–1, water level ranging from 0.02 m to 0.11 m, and cumulative mass of transported sediment ranging from 4.5 kg to 14.2 kg were measured. Then, bedload transport rate, water surface slope, bed shear stress, and stream power were evaluated. The results indicated the impact of initial bed conditions and flow unsteadiness on bedload transport rate and total sediment yield. Difference in ratio between the amount of supplied sediment and total sediment yield for tests with different initial conditions was observed. Bedload rate, bed shear stress, and stream power demonstrated clock-wise hysteretic relation with flowrate. The study revealed practical aspects of experimental design, performance, and data analysis. Water surface slope evaluation based on spatial water depth data was discussed. It was shown that for certain conditions stream power was more adequate for the analysis of sediment transport dynamics than the bed shear stress. The relations between bedload transport dynamics, and flow and sediment parameters obtained by dimensional and multiple regression analysis were presented.