The effect on traits of photosynthesis and water relations of assimilate demand was studied in olive tree that has strong alternate bearing. The diurnal and seasonal leaf gas exchanges, area dry mass, and saccharide and chlorophyll (Chl) contents were measured by comparing shoots with fruit of "on-trees" (heavy fruit load) with shoots without fruit on both "on-trees" and "off-trees" (light fruit load). In spite of large seasonal and diurnal differences, leaf net photosynthetic rate (PN), stomatal conductance (gs), sub-stomatal CO2 concentration (C1), transpiration rate (E), and respiration rate (RD) were not significantly influenced by fruit load or by the presence or absence of fruit on the shoot. An only exception was at the beginning of July when the one-year-old leaves on shoots with fruit had slightly higher PN and E than leaves on shoots without fruit. Water content, Chl and saccharide contents, and area dry mass of the leaf were not substantially influenced by the presence/absence of fruit on the shoot or fruit load. Hence the sink demand, associated with fruit growth, did not improve leaf photosynthetic efficiency in olive.
Seasonal changes in leaf gas exchange, assimilation response to light and leaf area were monitored in bearing and nonbearing pistachio shoots. Shoot bearing status did not directly affect leaf photosynthetic rate. However, photosynthetic light-response curves strongly varied during the season demonstrating the dominant effect of the tree’s seasonal phenology on assimilation. Early in the season low photosynthetic rates were associated with high rates of dark respiration indicating limited photosynthesis in the young leaves. As leaves matured, dark respiration decreased and assimilation reached maximum values. Photosynthetic efficiency was strongly reduced late in the season due to leaf age and senescence. Fruit load precipitated an early leaf senescence and drop that resulted in a 53% decrease in leaf area in bearing vs. nonbearing shoots, strongly decreasing the seasonal photosynthetic performance of bearing shoots. Bearing shoots produced a 26% lower seasonal carbon gain compared to nonbearing shoots., G. Marino, M. La Mantia, T. Caruso, F. P. Marra., and Obsahuje bibliografii