Trichinellosis is an important zoonosis that is difficult to diagnose and that can lead to disability, death and economic losses for the meat processing industry. The outbreaks are related to the consumption of insufficiently cooked pork containing larvae of Trichinella spiralis (Owen, 1833). Here, we describe epidemiological features of the disease in a region where incidence rates are typically elevated (Brasov County, Romania). Our descriptive, retrospective epidemiological study spanned a period of 25 years (1983-2007) in a group of 3 345 consumers of infected meat, of whom 2 179 became infected. Both raw pork and processed pork products were consumed, typically during winter and spring holidays. Pigs bred and slaughtered by households were not always tested prior to consumption. The imposition of greater hygiene and testing has decreased the burden of disease in recent years, but the tradition of raising swine for familial consumption without prior testing continues to threaten health, even among groups, not typically suspected of facing elevated zoonotic risk such as children and residents of urban areas. Most outbreaks took place at family celebrations during which pork raised locally was consumed. Higher rates of clinical disease in women may reflect their greater participation in such events, but may alternatively reflect greater exposure to raw pork during meal preparation.
The elastase, which belongs to the serine protease family, hydrolyses various proteins and may be involved in the parasite invasion. In this study, complete sequence of elastase-1 (TsE) the nematode Trichinella spiralis (Owen, 1835) was cloned into the plasmid pcDNA3.1 as TsE DNA vaccine. After intramuscular vaccination, serum anti-Trichinella antibodies (IgG and subclass IgG1/IgG2a, and IgA), total and specific intestinal mucosal sIgA in mice vaccinated with pcDNA3.1/TsE were measured by ELISA. The results showed that vaccination with pcDNA3.1/TsE induced a systemic humoral immune response (high levels of serum IgG and subclass IgG1/IgG2a and IgA) and local intestinal mucosal immune responses (high levels of TsE-specific sIgA). Vaccination of mice with TsE DNA vaccine also triggered a systemic and local concomitant Th1/Th2 response, as demonstrated by significant elevation of Th1 (IFN-γ and IL-2) / Th2 (IL-4 and IL-10) cytokine levels after the spleen, mesenteric lymph node and Peyer's patch cells from vaccinated mice were stimulated with recombinant TsE (rTsE). The vaccination of mice with pcDNA3.1/TsE displayed a 17% reduction of intestinal adult worms and a 39% reduction of muscle larvae. Our results indicated that TsE DNA vaccine elicited a systemic concomitant Th1/Th2 response and an enteral local sIgA response, and produced a partial protection against infection with T. spiralis. The TsE may be regarded as a potential candidate vaccine target against Trichinella infection. The oral polyvalent vaccines should be developed to improve the protective efficacy of anti-Trichinella vaccines.
The present study was undertaken to identify potentially immunoreactive proteins of the muscle larvae (ML) and adult stage (Ad) of the nematode Trichinella spiralis Owen, 1835. To identify immunoreactive proteins that are specifically recognised by anti-Trichinella antibodies, ML and Ad crude extracts and their excretory-secretory (E-S) products were subjected to sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and immunoblot with serum samples from pigs experimentally infected with T. spiralis. A total of 18 bands were selected for final identification by liquid chromatography-tandem mass spectrometry. To further understand the functions of the proteins identified in this study, gene ontology terms were applied. Results showed that the specific antibodies against T. spiralis reacted with protein bands matching heat shock proteins, aminopeptidase, enolase, isocitrate dehydrogenase NADP-dependent, tropomyosin, P49 antigen, serine proteinase, secreted 5'-nucleotidase, antigen targeted by protective antibodies, 53 kDa E-S antigen, putative trypsin and paramyosin. Three proteins common for both adult stage and muscle larvae, including heat shock proteins, enolase and 5'-nucleotidase, might play important role during T. spiralis infection. These proteins are presumably presented to the host immune system and may induce humoral immune response. Thus, these proteins may be potential antigens for early diagnosis and the development of a vaccine against the parasite., Justyna Bien, Wladyslaw Cabaj, Bozena Moskwa., and Obsahuje bibliografii