The aim of this study was to assess the molecular basis of renal Na,K-ATPase disturbances in response to NO-deficient hypertension induced in rats by NO-synthase inhibition with 40 mg/kg/day NG-nitro-L-arginine methyl ester (L-NAME) for four weeks. After 4-week administration of L-NAME, the systolic blood pressure (SBP) increased by 30 %. Three weeks after terminating the treatment, SBP recovered to control value. When activating the Na,K-ATPase with its substrate ATP, a 36 % increase in Km and 29 % decrease in Vmax values were observed in NO-deficient rats. During activation with Na+, the Vmax was decreased by 20 % and the KNa was increased by 111 %, indicating a profound decrease in the affinity of the Na+-binding site in NO-deficient rats. After spontaneous recovery from hypertension, the Vmax remained at the level as in hypertension for both types of enzyme activation. However, in the presence of lower concentrations of substrate which are of physiological relevance an improvement of the enzyme activity was observed as documented by return of Km for ATP to control value. The KNa value for Na+ was decreased by 27 % as compared to hypertension, but still exceeded the corresponding value in the control group by 55 % thus resulting in a partial restoration of Na+ affinity of Na,K-ATPase which was depressed as a consequence of NO-dependent hypertension., N. Vrbjar, V. Javorková, O. Pecháňová., and Obsahuje bibliografii
It was previously shown that 4 hours´ lasting inhibition of nitric oxide synthesis by administration of an L-arginine analogue, the NG-nitro-L-arginine methyl ester (L-NAME) changed the affinity of the Na-binding site of Na,K-ATPase thus resulting in elevation of enzyme activity especially at higher concentrations of sodium. Using the same experimental model, we focused our attention in the present study to the question of binding of ATP to the enzyme molecule in the left ventricle (LV), ventricular septum (S) and the right ventricle (RV) of the dog heart. Activation of the enzyme by increasing concentrations of ATP revealed a significant increase of the Vmax only in septum (by 38 %). The KM increased significantly in septum (by 40 %) and in left ventricle (by 56 %) indicating an altered sensitivity of the ATP-binding site of Na,K-ATPase in the hearts of NO-deficient animals. The alterations of Na,K-ATPase in its ability to bind and hydrolyze ATP are localized to the tissue surrounding the cavity of the left ventricle., N. Vrbjar, M. Strnisková, O. Pecháňová, M. Gerová., and Obsahuje bibliografii