Vascular endothelial growth factor (VEGF) has an important role in the pathogenesis of retinopathy of prematurity (ROP) and inhibition of VEGF expression in the neovascular phase might prevent destructive neovascularization in ROP. It is suggested that retinoids exert a highly potent antiangiogenic activity by inhibiting VEGF expression. The aim of this study was to demonstrate the preventive effect of retinoic acid (RA) on the VEGF-induced retinal neovascularization in a rat model of ROP. Wistar albino rats were placed into incubators at birth and exposed to an atmosphere alternating between 50 % and 10 % O2 every 24 hours. After 14 days, the animals were removed to room air and received either an intraperitoneal injection of RA (5 mg/kg/day) (n=9) or saline (n=4) daily for six days, and sacrificed at 21 days. Other rats (n=4) were raised in room air and served as age-matched controls. The globe of each eye was cut through the cornea and embedded in paraffin. Serial sections were stained with hematoxylin-eosin for quantification of neovascular nuclei. The avidin-biotin peroxidase method was performed for evaluation of VEGF expression. The average number of neovascular nuclei was significantly lower in the control group compared to that in the ROP groups. In addition, it significantly decreased in the RA-treated ROP group compared to that of the saline-administrated ROP group. VEGF immunostaining was overall negative in room air-exposed rats. The VEGF immunostaining score significantly decreased in the RA-treated ROP group compared to that in the saline-administered ROP group. RA treatment might be beneficial in preventing neovascularization resulting from oxygen-induced retinopathy by downregulation of VEGF expression.
In both embryonal carcinoma (EC) and embryonic stem (ES) cells, the differentiation pathway entered after treatment with retinoic acid (RA) varies as it is based upon different conditions of culture. This study employs mouse EC cells P19 to investigate the effects of serum on RA-induced neural differentiation occurring in a simplified monolayer
culture. Cell morphology and expression of lineage-specific molecular markers document that, while non-neural cell types arise after treatment with RA under serum-containing conditions, in chemically defined serum-free media RA induces massive neural differentiation in concentrations of 10-9 M and higher. Moreover, not only neural (Mash-1) and
neuroectodermal (Pax-6), but also endodermal (GATA-4, α-fetoprotein) genes are expressed at early stages of differentiation driven by RA under serum-free conditions. Furthermore, as determined by the luciferase reporter assay, the presence or absence of the serum does not affect the activity of the retinoic acid response element (RARE). Thus, mouse EC cells are able to produce neural cells upon exposure to RA even without culture in three-dimensional embryoid bodies (EBs). However, in contrast to standard EBs-involving protocol(s), neural differentiation in monolayer
only takes place when complex signaling from serum factors is avoided. This simple and efficient strategy is proposed to serve as a basis for neurodifferentiation studies in vitro.
Leukemia inhibitory factor (LIF) is a cytokine that exhibits proliferation, survival and differentiation in a wide range of cell types. Here we show that LIF potentiates retinoic acid-mediated neural induction in pluripotent P19 embryonal carcinoma cells. This activity of LIF was demonstrated by a profounded neural morphology followed by increased expression of neural-specific proteins (N-CAM, III β-tubulin, and GAP-43), up-regulation of early neural lineage-specific gene Mash-1, and down-regulation of early endoderm-specific genes α-fetoprotein and
GATA-4. Moreover, LIF also slows growth and increases the level of apoptosis in differentiating cells.