Ailinella gen. n. (Pseudophyllidea: Triaenophoridae) is proposed to accommodate Ailinella mirabilis sp. n. from Galaxias maculatus (Jenyns, 1842), a freshwater fish inhabiting the Andean lakes in Argentinean Patagonia. Ailinella belongs to the Triaenophoridae because it has a marginal genital pore, a follicular vitelline gland, and a ventral uterine pore. The new genus can be distinguished from other triaenophorids by the following combination of characters: a small body size, a low number of proglottides, which are longer than wide, a truncated pyramidal to globular scolex, a rectangular apical disc, presence of the neck, lack of internal longitudinal musculature separating the cortex from the medulla, testes distributed in one central field surrounding the ovary laterally and posteriorly, the vagina predominantly anterior to the cirrus sac, vitelline follicles circum-medullary, the genital pores post-equatorial, a saccate uterus, and operculate eggs. Blade-like spiniform microtriches were present on all tegument surfaces, and tumuli on all surfaces of the scolex and the anterior surface of the neck. Microtriches were characterized according to their size and density, and tumuli according to their size, inter-tumulus distance and density. Ailinella mirabilis is the first cestode described from G. maculatus and the second triaenophorid species recorded from a South American freshwater fish.
The tegument ultrastructure of the cestode Triaenophorus nodulosus has been studied in the stages of oncosphere, procercoid, plerocercoid and adult. The syncytium of primary tegument has glandular origin and is located in the peripheral areas of the oncosphere. The primary tegument degenerates at the initial stages of the procercoid development and is replaced with secondary tegument persisting throughout all following stages of the worm’s development. Two ways of microthrix formation on the body surface of procercoid were discovered. The formation of the cyst consisting of fibrillar material around the plerocercoid was observed. It fills spaces between numerous finger-like évaginations of plerocercoid’s tegument. The structural differentiation of tegument and microtriches was demonstrated on the scolex and all parts of strabila of T. nodulosus.
The vitellogenesis of Paraechinophallus japonicus (Yamaguti, 1934), the first pseudophyllidean tapeworm of the family Echinophallidae studied using transmission electron microscope, is described on the basis of ultrastructural observations of specimens from the benthopelagic fish Psenopsis anomala (Temminck et Schlegel, 1844) (Perciformes: Centrolophidae). The process of vitellogenesis in P. japonicus follows the same general pattern observed in other tapeworms. Five stages of vitellocyte development have been distinguished. The first stage corresponds to immature cells containing ribosomes and mitochondria. The second stage of development is characterized by the appearance of granular endoplasmic reticulum and Golgi complexes, formation of shell globules and lipid droplets at the periphery of the cell cytoplasm. Vitellocyte of the third stage presents accumulation of shell globules and lipid droplets. During the fourth stage, shell globule clusters are formed, and lipid droplets and rosettes of α-glycogen are accumulated. Mature vitelline cells are characterized by a great number of lipid droplets with glycogen in the centre of the cytoplasm, whereas shell globule clusters are situated more peripherally. The interstitial tissue of vitelline follicles of P. japonicus is syncytial with long cytoplasmic projections extending between vitelline cells. The presence of a large amount of lipid droplets in the vitelline cytoplasm within the eggs of P. japonicus may be related to egg accumulation in the uterine sac.