In a previous study we demonstrated that acute footshock stress increased glutathione peroxidase activity in the prefrontal cortex and striatum of adult male rats. Adolescents may respond differently to stress as life stressors may be greater than at other ages. The present study examined the effects of the acute footshock stress on superoxide dismutase (SOD) and glutathione peroxidase (GPx) enzyme activities and thiobarbituric acid reactive substances (TBARS) levels in adolescent male and female rat brains. We demonstrated that acute footshock stress increased SOD activity in the prefrontal cortex, and increased GPx activity in the hippocampus in female rats. In males, acute footshock stress increased GPx activity in the prefrontal cortex and hippocampus. Footshock stress did not change TBARS levels. These results indicate a strong role of gender in the response of adolescent subjects to various aspects of stress.
The effects of food reward on circadian system function were investigated in the hypothalamic nuclei, prefrontal cortex and liver. Food rewards of small hedonic and caloric value were provided for 16 days 3 h after light phase onset to male Wistar rats. The daily pattern of locomotor activity was monitored. Gene expression profiling performed in the dorsomedial hypothalamus (DMH) and liver at the time of reward delivery indicated transcriptional factors egr1 and npas2 as possible mediators of food reward effects. Candidate genes were measured in the suprachiasmatic nuclei (SCN), DMH, arcuate nucleus (ARC), prefrontal cortex (PFC) and liver along with per2 expression. A daily pattern in glycemia and per2 expression in the SCN was emphasized by food reward. The expression of egr1 was rhythmic in the SCN, DMH, PFC and liver and food reward
weakened or diminished this rhythm. The expression of npas2 was rhythmic in all tissues except for the PFC where food reward induced rhythm in npas2 expression. Food reward induced npas2 and egr1 expression in the DMH at the time of reward delivery. We suppose that the DMH and PFC participate in the adjustment of the circadian system to utilize food reward-induced input via egr1 and npas2 expression.