miRNAs are small regulatory RNA molecules involved in posttranscriptional gene silencing. Their biosynthesis results in the
formation of duplex consisting of a leading and a passenger strand of mature miRNA. The leading strand exhibits the main activity but recent findings indicate a certain role of the passenger strand as well. Deregulated levels of miRNA were found in many types of cancers including colorectal cancer. miR-21 and miR-16 were indicated as possible markers of colorectal cancer, however, small attention to gender differences in their expression was paid so far. Therefore, the aim of our study was to investigate the expression of miR-21-5p, miR-21-3p, miR-16-5p and miR-16-3p in human colorectal cancer tissue and compare it to the adjacent tissues taken during surgery in men and women separately. Our results showed an up-regulation of
all measured miRNAs in tumor tissue compared to adjacent tissues. As expected, tumors and adjacent tissues exhibited a significantly higher expression of leading miRNAs compared to passenger strand of miR-21 and miR-16. The expression of leading and passenger strand of miR-21 and miR-16 positively correlated exhibiting the highest correlation coefficient in the distal tissue. The expression pattern showed gender-dependent differences, with higher levels of miRNA in men than in women. Our findings indicate a gender-related expression pattern of miRNA, which should be considered as an important factor in generating new prognostic or diagnostic biomarkers.
The effects of food reward on circadian system function were investigated in the hypothalamic nuclei, prefrontal cortex and liver. Food rewards of small hedonic and caloric value were provided for 16 days 3 h after light phase onset to male Wistar rats. The daily pattern of locomotor activity was monitored. Gene expression profiling performed in the dorsomedial hypothalamus (DMH) and liver at the time of reward delivery indicated transcriptional factors egr1 and npas2 as possible mediators of food reward effects. Candidate genes were measured in the suprachiasmatic nuclei (SCN), DMH, arcuate nucleus (ARC), prefrontal cortex (PFC) and liver along with per2 expression. A daily pattern in glycemia and per2 expression in the SCN was emphasized by food reward. The expression of egr1 was rhythmic in the SCN, DMH, PFC and liver and food reward
weakened or diminished this rhythm. The expression of npas2 was rhythmic in all tissues except for the PFC where food reward induced rhythm in npas2 expression. Food reward induced npas2 and egr1 expression in the DMH at the time of reward delivery. We suppose that the DMH and PFC participate in the adjustment of the circadian system to utilize food reward-induced input via egr1 and npas2 expression.