Effect of photoperiod on the duration of summer and winter diapause was investigated in the cabbage butterfly, Pieris melete. By keeping naturally induced aestivating and hibernating pupae under various photoperiods, it was shown that diapause duration of aestivating pupae was significantly longer at long than at short daylengths, whereas diapause duration of hibernating pupae was significantly shorter at long than at short daylengths, suggesting both aestivating and hibernating pupae require opposite photoperiodic signals to promote diapause development. By transferring diapausing pupae, induced under various photoperiods, to 20°C with a naturally changing summer daylength, the diapause induced by short daylengths was easier to terminate than diapause induced by long daylengths. When naturally induced aestivating and hibernating pupae were kept under natural conditions, aestivating pupae had a long diapause (mean 155 days) and wide range of emergence (90 days), whereas hibernating pupae had a short diapause (mean 105 days) and a relatively synchronized emergence (lasted 30 days). Finally, the ecological significance of photoperiodic regulation of diapause duration is discussed.
We investigated the effect of the feeding behaviour of young larvae of Pieris rapae crucivora Boisduval (Pieridae) on parasitism by the parasitoid wasp, Cotesia glomerata (L.) (Braconidae). Young, 1st-3rd instar larvae used approximately three sites for feeding each day. When not feeding, they moved a short distance away from the feeding sites (= feeding marks) and rested. For first, second and third instar larvae, the distances from the new mark, made within 24 h, to larva at rest were, respectively, about 3.5 mm, 5 mm and more than 10 mm. To resume feeding, they moved back to one of the former feeding sites or a new site. The percentage of the feeding marks older than 24 h that attracted parasitoids was less than 50%. Time spent searching for hosts by a parasitoid was short. Larvae placed 5 mm or more from a feeding mark were less parasitized than the larvae placed near a mark. The number of feeding marks affected parasitism. When comparing single-marked and triple-marked leaves, the percentage parasitism of the larvae on the latter was significantly lower than that of the larvae on the former. On triple-marked leaves, parasitoids visited each mark unevenly. Accordingly, the time spent searching each mark differed significantly among the marks. Because of this confusing effect, hosts are considered to be reducing the risk of parasitism. Our results demonstrate that the feeding habits of young larvae of P. rapae crucivora are adaptive in terms of reducing the risk of parasitism by C. glomerata., Aya Nakayama, Keiji Nakamura, Jun Tagawa., and Obsahuje bibliografii
Flight is important for insects but also incurs costs in terms of reduced reproductive reserves. Recent studies on butterflies have shown that thorax mass and nitrogen content decrease over the adult lifespan, suggesting that flight muscle breakdown may also occur in butterflies. However, unlike other insects known to resorb flight muscles, butterflies will continue to fly throughout the reproductive period. Nonetheless, use of nutrients from flight muscles for reproduction has the potential to improve the reproductive output considerably. In this study we have tested to what extent female Pieris napi L. (Pieridae) butterflies actually do breakdown flight muscles. By comparing muscle mass in recently emerged and older free-flying females we show that mass and nitrogen content of the two most important groups of flight muscles each decrease by more than 50% over the adult lifespan. The significance of this finding is discussed in relation to reproduction and flight in butterflies.
Preferences of young caterpillars of three species of Pieris (P. rapae crucivora Boisduval, P. melete Ménétriès, and P. napi japonica Shirôzu) (Lepidoptera: Pieridae) for the upper and lower surfaces of the leaves of their host plants (Brassicaceae) were investigated in the laboratory. On horseradish Armoracia rusticana Gaertn. Mey. et Scherb., which was provided as a common food for three species, second and third instar larvae of the respective species preferred the lower to the upper surface of horizontally placed leaves, irrespective of whether they hatched on the upper or lower surface. First instar larvae seemed to remain on the surface on which they hatched. However, first instar larvae of P. melete on Rorippa indica (L.), a natural food of P. melete in the field, and first instar larvae of P. napi japonica on Arabis flagellosa Miq., a natural food of P. napi japonica, preferred the lower to the upper surface, just as second and third instar larvae did. To elucidate the effects of leaf-surface preference, the percentage parasitism of P. rapae crucivora on Arm. rusticana and Ara. flagellosa by the parasitoid Cotesia glomerata (L.) (Hymenoptera: Braconidae) was investigated. On Arm. rusticana, the percentage parasitism of the larvae on the upper surface was higher than that of larvae on the lower surface. On Ara. flagellosa, however, percentages parasitism were nearly equal on both surfaces. Leaf-surface preference by the larvae of Pieris is discussed in terms of avoidance of parasitism by the parasitoid C. glomerata.
Overlapping measurements in the length of the genitalia of Leptidea sinapis/reali collected in Slovenia triggered an investigation of a possible natural hybridization between these two well known sibling species of butterflies. Random polymorphic DNA (RAPD) was used to generate species specific markers and sequences of the cytochrome oxidase subunit one gene for determination of the progeny. RAPD's clustering and mitochondrial DNA (mtDNA) phylogeny were congruent with the taxonomic placement of specimens of both species, but slightly incongruent with the results of the analysis of genital morphology. Two specimens with L. reali genitalia measurements, but genetically belonging to L. sinapis, had species specific RAPD markers of both species indicating probable hybrid origin. All the specimens with genitalia of intermediate length were also genetically assigned to L. sinapis indicating a possible one way introgression as predicted from their genitalia morphology. Leptidea sinapis was found predominantly in xerothermic habitats in Slovenia, whereas L. reali was more of a generalist except in the sub-Mediterranean region where it is limited to humid meadows.
We studied the demography, movement, behaviour and choice of nectar plants by adults of Aporia crataegi. This study was done in a dense network of different types of habitats (total size of study area 16.26 ha) from open landscape to shrubland, the latter being a result of abandonment of traditional agricultural practices such as extensive mowing and grazing. Total population size was estimated to be approximately 1700 and 2700 for females and males, respectively. Median and maximum distances moved by males were 134 and 3493 m, and by females 138 and 3165 m, respectively. The average lifespan was ca. 7.1 and 7.5 days, with maximum recorded lifespans of 21 and 17 days for males and females, respectively. The greater capture probability recorded for males indicates their high activity, as they spend most of their time in flight patrolling and searching for mates. A parabolic recruitment curve and protandry were also recorded. Both sexes are highly mobile. The spatial distribution of both sexes was roughly similar. The adult behaviour differed in different habitats, with more time spent feeding and resting when nectar plants were plentiful and more time spent flying when they were rare. Although adults utilized nine nectar sources, only two were recorded in over 80% of all the feeding occasions. In order to re-establish open grassland with some shrubland, traditional and mosaic management of the landscape should be revived at least to some extent., Jure Jugovic, Mitja Črne, Martina Lužnik., and Obsahuje bibliografii
At the south western border of its extensive distribution, the multivoltine large white butterfly, Pieris brassicae L., is exceptional in undergoing summer diapause or aestivation. In all other regions investigated, P. brassicae pupae only hibernate. The transitional zone from non-aestivating to aestivating populations is a geographically stable region south of the Pyrenees. The restriction of this response to this region cannot be accounted for in terms of genetics as aestivation is intermediately inherited, with the heritability (h2) of aestivation in inbreeding lines between 0.35 and 0.77. Two hypotheses are presented to explain why this species does not aestivate in more northern regions. First, aestivation is a behaviour that serves to synchronize generations in areas where this species produces a high number of generations per year. Second, aestivation reduces the incidence of parasitism suffered by the butterfly by desynchronizing its life cycle from that of its main parasitoid, Cotesia glomerata. The two hypotheses are not mutually exclusive and both seem to be adaptive where the species is multivoltine. and Hubert R. Spieth, Ulrich Pörschmann, Carola Teiwes.
Thermal requirements for flight in butterflies is determined by a combination of external factors, behaviour and physical constraints. Thorax temperature of 152 butterflies was monitored with an infra-red thermometer in controlled laboratory conditions. The temperature at take-off varied from 13.4°C, for a female Heteronympha merope to 46.3°C, for a female Junonia villida. Heteronympha merope, an understorey species, had the lowest recorded take-off temperatures, with females flying at a much lower thorax temperatures than males. Among the tested butterfly species, warming-up rate was positively correlated with take-off temperature and negatively with body mass. Wing loading is a major variable in determining the thorax flight temperature. Butterflies with the highest wing-loadings experienced the highest thorax temperatures at take-off. A notable exception to this rule is Trapezites symmomus, the only Hesperiidae of our data set, which had thorax flight temperatures of 31.5°C and 34.5°C, well within the range of the observed butterflies, despite a wing load ca. five times higher. The high thorax temperature recorded in J. villida is probably linked to its high flight speed. The results highlight the importance of physical constraints such as body size on the thermal requirements for flight across a range of butterfly species., Gabriel Nève, Casey Hall., and Obsahuje bibliografii