The effect of oral supplementation with glycosaminoglycans (GAG) and radical scavengers (vitamin E/selenium) on the regeneration of osteochondral defects was investigated in rabbits. After introduction of defined osteochondral defects in the knee joint, groups of ten animals were given a GAG/vitamin E/selenium mixture or a placebo (milk sugar) for 6 weeks. Following sacrifice, histological and histochemical analysis was performed. The amount of synovial fluid was increased in the placebo group, while the viscosity of the synovial fluid was significantly enhanced in the GAG group. The amount of sulfated GAG in the osteochondral regenerates (8.8±3.6 % vs. 6.0±5.6 %; p<0.03) was significantly higher in the GAG group. In both groups, the GAG amount in the cartilage of the operated knee was significantly higher than in the non-involved knee (p<0.05). Histological analysis of the regenerates in the GAG group was superior in comparison with the placebo group. For the first time, a biological effect following oral supplementation with GAG was demonstrated in healing of osteochondral defects in vivo. These findings support the known positive clinical results., M. Handl, E. Amler, K. Bräun, J. Holzheu, T. Trč, A. B. Imhoff, A. Lytvynets, E. Filová, H. Kolářová, A. Kotyk, V. Martínek., and Obsahuje bibliografii a bibliografické odkazy
Prague hereditary hypercholesterolemic (PHHC) rat – rat strain crossbred from Wistar rats – is a model of hypercholesterolemia induced by dietary cholesterol. Importantly, no bile salts and/or antithyroid drugs need to be added to the diet together with cholesterol to induce hypercholesterolemia. PHHC rats have only modestly increased cholesterolemia when fed a standard chow and develop hypercholesterolem ia exceeding 5 mmol/l on 2 % cholesterol diet. Most of the cholesterol in hypercholesterolemic PHHC rats is found in VLDL that become enriched with cholesterol (VLDL-C/VLDL-TG ratio > 1.0). Concurrently, both IDL and LDL concentrations rise without any increase in HDL. PHHC rats do not markedly differ from Wistar rats in the activities of enzymes involved in intravascular remodelation of lipoproteins (lipoprotein and hepatic lipases and lecithin:cholesterol acyltransferase), LDL catabolism, cholesterol turnover rate and absorption of dietary cholesterol. The feeding rats with cholesterol diet results in development of fatty liver in spite of suppression of cholesterol synthesis. However, even though cholesterolemia in PHHC rats is comparable to human hypercholesterolemia, the PHHC rats do not develop atherosclerosis even after 6 months on 2 % cholesterol diet. Importantly, the crossbreeding experiments documented that hypercholesterolemia of PHHC rats is polygenic. To identify the genes that may be involved in pathogenesis of hypercholesterolemia in this strain, the studies of microarray gene expression in the liver of PHHC rats are currently in progress., J. Kovář ... [et al.]., and Obsahuje seznam literatury