Extensive experimental investigations were carried out to evaluate the rheological behaviour of fly ash (FA) slurry without and with the addition of bottom ash (BA) and BA slurry without and with the addition of FA. The FA slurries exhibited Bingham behaviour at solid mass concentrations ranging from 60-65% and mixing proportions from 10- 40%. A substantial reduction in yield stress was observed except for mixing proportion of 40% on which the yield stress and viscosity were increased drastically for all solid concentrations. Hence, it can be concluded that the yield stress and viscosity of FA slurry were very much influenced by adding BA up to the mixing proportion of 30%. The rheological behaviour of BA slurries with and without the addition of FA in proportions of 10-50% was investigated and exhibited Newtonian behaviours for solid mass concentrations ranging from 30-50% without and with the addition of FA. The viscosity increases with increasing the solid concentrations and proportion of FA. Based on these experimental data, a correlation was developed to predict the relative viscosity of BA slurries as a function of solid volume fraction and FA mass proportion of 0-50% and the RMSE and R2 values showed good agreement between the experimental and the predicted data.
In slurry transport of settling slurries in Newtonian fluids, it is often stated that one should apply a line speed above a critical velocity, because blow this critical velocity there is the danger of plugging the line. There are many definitions and names for this critical velocity. It is referred to as the velocity where a bed starts sliding or the velocity above which there is no stationary bed or sliding bed. Others use the velocity where the hydraulic gradient is at a minimum, because of the minimum energy consumption. Most models from literature are one term one equation models, based on the idea that the critical velocity can be explained that way. Here the following definition is used: The critical velocity is the line speed below which there may be either a stationary bed or a sliding bed, depending on the particle diameter and the pipe diameter, but above which no bed (stationary or sliding) exists, the Limit Deposit Velocity (LDV). The way of determining the LDV depends on the particle size, where 5 regions are distinguished. These regions for sand and gravel are roughly; very small particles up to 0.014-0.040 mm (d < δv), small particles from δv-0.2 mm, medium particles in a transition region from 0.2-2.00 mm, large particles > 2 mm and very large particles > 0.015·Dp. The lower limit of the LDV is the transition between a sliding bed and heterogeneous transport. The new model is partly based on physics and correlates well with experiments from literature.