The ATLAS experiment ALFA detector allows to detect protons originating in diffractive proton-proton interactions at the LHC and to reconstruct their kinematics. The main purpose of the ALFA detector measurements is a determination of Absolute Luminosity of the proton-proton interactions for the ATLAS experiment and a comparison of its results with the existing measurements provided by other ATLAS detectors. The second set of the measurements using ALFA detector is a determination of the total cross-section of the proton-proton interaction at all yet achieved LHC energies. The third group of possible measurements is related to the determination of cross-sections of e.g. the single diffraction or exclusive central diffraction processes. The article introduces ALFA detector simulation as the essential tool to determine the key parameters used in the data analysis - e.g. detector acceptance, detector reconstruction efficiency or detector resolution. and Detektor ALFA experimentu ATLAS umožňuje detekovat protony v difrakčních proton-protonových srážkách na LHC a rekonstruovat jejich kinematické proměnné. Hlavním cílem měření, využívajícím detektor ALFA, je stanovení absolutní luminosity srážek pro experiment ATLAS a jeho srovnání s používanými měřeními poskytovanými jinými detektory. Druhou sadou důležitých měření, která detektor umožňuje, je stanovení celkového účinného průřezu proton-protonové interakce, a to pro všechny dosažené srážkové energie na LHC. Třetí skupinu měření představuje stanovení účinných průřezů procesů, jakými jsou např. jednoduchá difrakce či exklusivní centrální difrakční produkce. Článek seznamuje čtenáře se simulací detektoru ALFA, která je nezbytná pro zjištění základních parametrů používaných v analýzách měření - např. akceptace detektoru, jeho rekonstrukční účinnost nebo rozlišení.
In this paper, firstly basic concepts of the structural reliability will be summarized in terms of two basic variables, i.e. structural response (R) and load efect (S). The uncertainty in structural response could be statistically characterized by mean and coefficient of variation (ΩR). Based on these formulations, there must be an upper limit of ΩR for the pre-specified acceptable level of reliability (pf). The increment of coefficient of variation of load effect (Ωs) shows minor influence on the central factor of safety (FS) and its effect diminishes rapidly where ΩR approaches the upper limit. Below this limit, the structural system could be used safely for a pre-specified target reliability. For lower value of ΩR, the target FS could be determined from the quadratic relationship between ΩR and ΩS., The structural response for foundations is typically a function of soil properties, sections and dimensions. It is not uncommon that uncertainties in soil properties could be normal or non-normal probability distribution and the relationship among basic variables in forming the structural response could be either non-linear or so complicated that results could be obtained from finite element analyses only. Fortunately, the randomness of structural response could be obtained by Monte Carlo simulation technique. Then the fitted distribution of outcome experiments could be specified by Goodness-of-Fit tests. The applicability of proposed concepts could be demonstrated in numerical examples, e.g. driven pile, spread footing and bored pile. For the conventional design approach, soil parameters ae considered to be constant. The solution is simplified thorough the use of deterministic safety factor. In reality, soil is neither isotropic nor homogeneous such that their uncertainties could not be ignored. References to the calculated failure probability evidence that deterministic safety factor could not guarantee enough safety. In some cases, an FS of 3 or more is not considered too conservative to apply for the structural response., and Obsahuje seznam literatury